Abstract:
In a radiation image processing apparatus, method, and program, performing image processing based on scattered radiation, such as scattered radiation elimination processing, accurately by taking into account the influence of scattered radiation from an area adjacent to a processing target area. For this purpose, performing image processing on a radiation image captured by applying radiation to a subject based on scattered radiation generated by the subject. In this case, a processing target area which is the processing target in the radiation image is added with another area different from the processing target area in the radiation image. Then, the image processing based on scattered radiation is performed on the processing target area using the another area and the processing target area.
Abstract:
A radiography apparatus includes an upright imaging stand that is used for radiography on a subject, a camera as a detection sensor that immediately detects a state of the subject with respect to the upright imaging stand, a tablet terminal, and a reflective member. The tablet terminal displays a notification screen including an image output from the camera. The reflective member reflects the notification screen such that the subject facing the upright imaging stand visually recognizes the image.
Abstract:
A CPU of a console comprises a color image acquisition unit, a distance image acquisition unit, a specification unit, and an estimation unit. The color image acquisition unit acquires a color image, in which a patient and a periphery of the patient are captured, from a visible light camera. The distance image acquisition unit acquires a distance image indicating a distance between a radiation tube and an object, from a TOF camera. The specification unit specifies a kind of the object in the color image. The estimation unit estimates intensity of radiation in an environment captured in the color image based on reference information including the distance image and a specification image as a specification result of the kind of the object.
Abstract:
A radiation detector includes a support table in which an attachment surface having an arc surface shape is formed, a sensor panel which has a rectangular plate shape and in which pixels that include TFTs and detect radiation are two-dimensionally arranged, a circuit board, a flexible cable, and a reduction structure. The sensor panel is attached to the attachment surface while being curved following the arc surface shape. The flexible cables connect a curved side of the sensor panel and a reading circuit board and are arranged along the curved side. The flexible cable is bent to dispose the reading circuit board at an angle of 90° with respect to the sensor panel. The reduction structure reduces a bias of a stretching force applied to the flexible cable caused by the curved side.
Abstract:
A radiographic image capturing apparatus has a radiation source device including a radiation source for outputting radiation, and a detector device including a radiation detector for detecting radiation that is transmitted through a subject when the subject is irradiated with radiation by the radiation source, and converting the detected radiation into a radiographic image. At least one of the radiation source device and the detector device has an electric power supply limiting unit for limiting supply of electric power, and the electric power supply limiting unit controls supply of electric power between the radiation source device and the detector device, depending on timing of an image capturing process.
Abstract:
There are provided the following components: an FPD that has a plurality of pixels, in which signal electric charges corresponding to amounts of X-rays incident are accumulated, and that is capable of nondestructively reading data which indicates the X-ray image; an amplifier that amplifies a signal sent from the FPD and has a variable gain; an evaluation value calculation section that obtains an evaluation value for evaluating the X-ray image; and a gain adjustment section that calculates a new gain of the amplifier used at the time of rereading. The gain of the amplifier is changed to a value of a new gain which is calculated by the gain adjustment section, and the X-ray image is reread.
Abstract:
A radiation image capture device includes plural radiation detection panels that each detect incident radiation that has passed through an imaging subject, that each generate a radiation image, and that are disposed in a row in a direction orthogonal to the radiation incident direction. The radiation image capture device designates a display target image from out of plural radiation images respectively generated by the plural radiation detection panels, and transmits the designated display target image to a console. At least a radiation image other than the display target image is stored in an image memory. The console displays on a display section the received display target image and, in response to data indicating a display request for a radiation image other than the display target image, also displays on the display section the radiation image other than the display target image read from the image memory.
Abstract:
A radiation image capturing system includes a first image capturing apparatus for capturing a radiation image of a subject, a second image capturing apparatus for capturing a radiation image of the subject, the second image capturing apparatus having a specification different from that of the first image capturing apparatus, an image correcting device for correcting the radiation image of the subject which is captured by the second image capturing apparatus such that the radiation image of the subject which is captured by the second image capturing apparatus has the same magnification as that of the radiation image of the subject which is captured by the first image capturing apparatus, and a display unit for displaying the corrected radiation image. The radiation images captured by the image capturing apparatus of different specifications are corrected to have the same magnification.
Abstract:
There is provided a radiographic imaging device including: a radiation detector including plural radiographic image acquisition pixels that are arranged in a matrix in an imaging region for capturing a radiographic image and that acquire image information representing the radiographic image by converting applied radiation into electric charges and storing the electric charges and plural radiation detection pixels that are arranged in the imaging region, that have mutually different characteristics, and that detect the applied radiation by converting the applied radiation into electric charges and storing the electric charges; and a detecting unit that uses the radiation detection pixels selectively according to the characteristics to detect a state of application of the radiation.
Abstract:
A radiographic imaging device that may detect irradiation states of radiation is provided. Pixels for radiation detection that are provided in a radiation detector of an electronic cassette are configured with characteristics thereof being alterable. The characteristics are set in accordance with the imaging conditions of a radiation image by a cassette control section of the electronic cassette.