Abstract:
Provided is a stretchable display including an elastic body, a light emitting unit on the elastic body, and a wiring unit on the elastic body, wherein the light emitting unit includes a first substrate unit on the elastic body, a buffer layer on the first substrate unit, and a light emitting element on the buffer layer, the wiring unit includes a second substrate unit on the elastic body, a driving element configured to control the light emitting element, a wiring configured to electrically connect the driving element and the light emitting element, and an insulation layer configured to cover the driving element and the wiring, the light emitting unit and the wiring unit have respective corrugation structures, a thickness of the light emitting unit is larger than that of the wiring unit, a modulus of elasticity of the buffer layer is larger than that of the insulation layer, and a modulus of elasticity of the elastic body is smaller than that of the insulation layer.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Provided is a low frequency vibrating actuator device. The low frequency vibrating actuator device includes a substrate including a pair of connection electrodes, an actuator provided on the pair of connection electrodes to generate vibration, a support provided on the actuator, a vibration membrane provided on the support to vibrate according to the actuator, and a vibrating mass provided on the vibration membrane to vibrate according to the vibration membrane. The actuator includes a plurality of laminated insulating layers and internal electrodes that are alternately laminated between the insulating layers adjacent to each other, and a top surface of the support, which contacts the vibration membrane, has an area that is equal to or less than that of a bottom surface of the support, which contacts the actuator.
Abstract:
Provided is a pixel circuit. The pixel circuit includes a conversion element forming a voltage of an input level at a first node, a first transistor adjusting the voltage of the first node to a first level in response to a first signal received at a first time interval, a first capacitive element forming a voltage at a second node based on the voltage of the first node, a second transistor adjusting a level of the voltage of the second node to a second level in response to the first signal, a third transistor forming a voltage at a third node, a fourth transistor outputting a current in response to a second signal received in a second time interval, and a. fifth transistor adjusting the voltage of the third node to a third level in response to a third signal received in a third time interval.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
Provided is stretchable electronics. The stretchable electronics includes stretchable substrate, first support patterns disposed on a first surface of the stretchable substrate, and output devices disposed on the first patterns, respectively. The first support patterns are arranged in a first direction and a second direction, which are parallel to an extension direction of the substrate, and each of the output devices generates an output stimulation.
Abstract:
Provided is a thin film transistor including a substrate, a first spacer on the substrate, a second spacer on the first spacer, a light shield layer intervened between the first spacer and the second spacer, a semiconductor layer on the second spacer, and a gate electrode on the semiconductor layer, wherein the light shield layer includes a plurality of inclined surfaces against a top surface of the substrate.
Abstract:
A tactile display device comprises a first electrode, a second electrode, supports between a first and a second electrodes, and an electroactive polymer filled between a supports.
Abstract:
The present invention relates to a radio communication antenna and a radio communication device including the same. The radio communication antenna of the present invention includes first conductive wires extending in opposite directions with respect to a first direction on a substrate to form a dipole antenna, second conductive wires separated from the first conductive wires to be parallel with the first conductive wires, and stubs connected between the first conductive wires and the second conductive wires in a second direction intersecting with the first direction.