Abstract:
The present disclosure relates to a compact external cavity tunable laser apparatus. The laser apparatus includes a substrate, an external cavity tunable reflecting unit that reflects laser light entering from the outside on the substrate and selects and varies a wavelength of the reflected laser light, an optical fiber that outputs the laser light on the substrate; and an highly integrated light source that integrates the laser light input from the external cavity tunable reflecting unit using inclined input and output waveguides, a curved waveguide, and a straight waveguide to output the integrated laser light to the optical fiber in order to match an optical axis formed with the external cavity tunable reflecting unit with an optical axis formed with an optical fiber.
Abstract:
Provided are an optical waveguide device and a laser apparatus including the same. The optical waveguide device includes a peripheral part disposed on an edge region of a substrate, an air pocket disposed on a central region of the substrate within the peripheral part, an optical waveguide comprising a core layer, which is disposed on an upper portion of the substrate within the air pocket to extend in a first direction, and an electrode on the core layer, and a plurality of hinges disposed on the air pocket to connect the optical waveguide to the peripheral part in a second direction crossing the first direction.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
Disclosed are a wavelength-selectable laser diode and an optical communication apparatus including the same. The wavelength-selectable laser diode includes a substrate, which includes a gain region, a tuning region spaced apart from the gain region, and a phase adjusting region between the tuning region and the gain region, a waveguide layer on the substrate, a clad layer on the waveguide layer, and gratings disposed on the substrate or the clad layer in the gain region and the tuning region.
Abstract:
An optical device according to the embodiment of the inventive concept includes a waveguide path including a light generation region, a wavelength variable region, and a light modulation region, a first light waveguide layer provided in the light generation region to generate light, a second light waveguide layer provided in the wavelength variable region and connected to the first light waveguide layer, a ring-shaped third light waveguide layer provided in the light modulation region and connected to the second light waveguide layer, and first and second light modulation electrodes spaced apart from each other with the light modulation region therebetween. Here, the first light modulation electrode, the third light waveguide layer, and the second light modulation electrode vertically overlap each other.
Abstract:
Provided is an optical detection device including a first ohmic contact layer of a first conductivity type, a second ohmic contact layer of a second conductivity type, and first and second mesa structures stacked between the first and second ohmic contact layers. The first mesa structure includes an electric field buffer layer; and a diffusion layer formed in the electric field buffer layer. The second mesa structure includes a light absorbing layer and a grading layer on the light absorbing layer.
Abstract:
Provided is a reflective colorless optical transmitter receiving a carrier signal, which is a continuous wave, and outputting a modulated optical signal. The reflective colorless optical transmitter includes a semiconductor optical amplifier (SOA) amplifying an input optical signal allowing the input optical signal to have a gain, an optical modulator connected to the SOA and outputting a modulated optical signal, a high reflectivity facet reflecting the modulated optical signal from the optical modulator, and a Bragg reflection mirror connected to the high reflectivity facet, the optical modulator, and the SOA in series, wherein a Bragg resonator is formed by the Bragg reflecting mirror and the high reflectivity facet.
Abstract:
The present disclosure relates to a tunable laser module including a light gain area unit for outputting an optical signal; an optical distributor for separating the optical signal output from the light gain area unit; two comb reflection units for reflecting a part of optical signals separated by the optical distributor and allow a part of the optical signals to penetrate; two phase units for changing phases of the optical signals penetrating the two comb reflection units; an optical coupler for combining the optical signals of which the phases are changed by the two phase units; and an optical amplifier for amplifying the optical signal combined by the optical coupler, wherein the light gain area unit oscillates a laser by totally reflecting the optical signals reflected by the two comb reflection units.
Abstract:
Disclosed are a laser radar system and a method for acquiring an image of a target, and the laser radar system includes: a beam source to emit the laser beam; a beam deflector disposed between the beam source and the target, and configured to deflect the laser beam emitted from the beam source in a scanning direction of the target as time elapses; and an optical detector configured to detect the laser beam reflected from the target, which is provided a plurality of beam spots having a diameter DRBS; and a receiving optical system disposed between the target and the optical detector and configured to converge the laser beam reflected from the target, and the optical detector includes a detecting area having a diameter DDA that satisfies an equation of √{square root over (/2)}×PRBS+2×DRBS≦DDA≦2×Dlens and an equation of (4/π)×λ×F_number
Abstract:
The present disclosure relates to a compact external cavity tunable laser apparatus. The laser apparatus includes a substrate, an external cavity tunable reflecting unit that reflects laser light entering from the outside on the substrate and selects and varies a wavelength of the reflected laser light, an optical fiber that outputs the laser light on the substrate; and an highly integrated light source that integrates the laser light input from the external cavity tunable reflecting unit using inclined input and output waveguides, a curved waveguide, and a straight waveguide to output the integrated laser light to the optical fiber in order to match an optical axis formed with the external cavity tunable reflecting unit with an optical axis formed with an optical fiber.