Abstract:
Provided is a laser radar system. The laser radar system includes a first transmission and reception unit sequentially radiating a first laser beam to a plurality of locations within a first view range and receiving a reflected light; and a second transmission and reception unit sequentially radiating a second laser beam to a plurality of locations within a second view range and receiving a reflected light, wherein each of the first transmission and reception unit and the second transmission and reception unit is fixed to a loader and independently searches for the first view range and the second view range.
Abstract:
Disclosed are a laser radar system and a method for acquiring an image of a target, and the laser radar system includes: a beam source to emit the laser beam; a beam deflector disposed between the beam source and the target, and configured to deflect the laser beam emitted from the beam source in a scanning direction of the target as time elapses; and an optical detector configured to detect the laser beam reflected from the target, which is provided a plurality of beam spots having a diameter DRBS; and a receiving optical system disposed between the target and the optical detector and configured to converge the laser beam reflected from the target, and the optical detector includes a detecting area having a diameter DDA that satisfies an equation of √{square root over (/2)}×PRBS+2×DRBS≦DDA≦2×Dlens and an equation of (4/π)×λ×F_number
Abstract:
A semiconductor laser diode light source package includes: a seed light source for outputting signal beams; a pump beam source for outputting pump beams; and at least one mirror for transmitting the signal beams to a core of an output optical fiber and transmitting the pump beams to first cladding of the output optical fiber, wherein the seed light source, the pump beam source, and the at least one mirror are realized in a semiconductor chip, and the output optical fiber is connected to an end terminal of the semiconductor laser diode light source package.
Abstract:
There are provided an optical receiver and a laser radar including the same. The optical receiver includes a plurality of optical detecting units configured to convert an optical signal reflected from a target into an electrical signal and to output the electrical signal, a signal combiner configured to combine output signals of the plurality of light detecting regions, a plurality of switches provided between the plurality of optical detecting units and the signal combiner, and a controller configured to control the plurality of switches so that the plurality of optical detecting units are selectively connected to the signal combiner based on whether the optical signal to reflected from the target is input. Therefore, it is possible to make a module small, to improve stability and reliability, and to reduce a signal to noise ratio.
Abstract:
Disclosed are an avalanche photodiode with a guard ring structure that relieves edge breakdown by an external voltage which is applied through a metal pad which is attached to the guard ring and a manufacturing method thereof. An avalanche photodiode with a guard ring structure includes a plurality of semiconductor layers laminated on a substrate; an active region partially formed above the semiconductor layers; a guard ring which is formed above the semiconductor layers and disposed so as to be spaced apart from the active region and have a ring shape that encloses the active region; and a connecting unit formed on the semiconductor layers to be electrically connected to the guard ring so as to apply an external voltage to the guard ring region. Therefore, the external voltage is applied to the guard ring of the avalanche diode through the connecting unit to relieve the edge breakdown.
Abstract:
Disclosed is a laser radar device, which includes a signal light source that outputs a first signal light, a pump light source that outputs a pump light, a pump optical fiber that transfers the pump light, a first signal optical fiber that transfers the first signal light, a first amplifier that receives and amplifies the first signal light from the first signal optical fiber, a second signal optical fiber that receives and transfers a second signal light from the first amplifier, the second signal light being obtained by amplifying the first signal light, a second amplifier that receives and amplifies the second signal light from the second signal optical fiber, and an optical coupler connected to the first signal optical fiber, the second signal optical fiber, and the pump optical fiber, and that distributes the pump light to the first signal optical fiber and the second signal optical fiber.
Abstract:
A LIDAR system is provided. The LIDAR system includes: a light transmitting unit configured to drive a plurality of light emitting elements by light emitting units to irradiate light to different positions of a target object; and a light receiving unit configured to detect light that is reflected at different positions of the target object and then is incident to different light receiving positions through a plurality of light receiving regions.
Abstract:
The present disclosure relates to an apparatus for obtaining 3D information using a photodetector array. The apparatus for obtaining 3D information includes: a light source unit configured to generate an optical signal of a predetermined wavelength band; a light transmission optical lens unit provided on a path of the optical signal and configured to emit the optical signal output from the light source unit in parallel or at a predetermined angle; an optical scanning unit configured to scan the light output from the light transmission optical lens unit to a surface of an object to be measured; a light reception optical lens unit configured to collect the light reflected from the surface of the object; and a photodetection unit configured to convert collected optical signals into respective electrical signals by arraying one or more photodetectors such that light reception portions thereof are collected at a center.