Abstract:
The present invention provides aqueous compositions which have low or zero volatile organic content (VOC) comprising (i) an open time additive composition of one or more phosphorus acid salts, preferably a phosphoric acid salt, and one or more polyalkoxylates having from 2 to 15 polyalkoxylate chains and an ethylene oxide (EO) content ranging from 20 to 70 wt. %, based on the total weight of polyalkoxylate solids in the composition. The (i) additive compositions may have a solids content as high as 95 wt. %. Further, the compositions may comprise (ii) one or more aqueous polymer, such as for use in coatings or non-cementitious mortars.
Abstract:
A surfactant composition selected from the group consisting of: (R1O)CH2—CH[(OCH2CH2)1-20OH]—CH2(OR2) and mixtures thereof; wherein at least one of R1 and R2 are secondary alkyl groups including from 3 to 9 Carbon atoms; an aqueous coating composition including an aqueous polymeric dispersion; and certain other compositions including the surfactant composition are provided. Also provided is a method for forming a coating.
Abstract:
An aqueous coating composition including an aqueous polymeric dispersion and from 0.1% to 40% by weight, based on the weight of the aqueous polymeric dispersion solids, Phenylphenol-(CH2CH2O)2-50H, isomers thereof, aromatic ring substituted analogues thereof, and mixtures thereof is provided. Also provided are a method for forming a coating therefrom, a method for improving the freeze-thaw stability of an aqueous coating including a polymeric dispersion and alternative uses for Phenylphenol-(CH2CH2O)2-50H, isomers thereof, aromatic ring substituted analogues thereof, and mixtures thereof.
Abstract:
A polymeric composition includes an ethylene-silane copolymer comprising units derived from ethylene monomer and a silane monomer, wherein the ethylene-silane copolymer has a copolymerized silane content from 0.48 mol % to 1.00 mol %, a Brønsted acid catalyst and a filler comprising one or more of a flame retardant and carbon black. A Filler to Catalyst Weight Ratio is from 75 to 1000.
Abstract:
A moisture-curable polyethylene formulation comprising a (hydrolyzable silyl group)-functional polyethylene copolymer and a condensation cure catalyst. The formulation is designed to be rapidly moisture curable under ambient conditions. Also methods of making and using same; cured polymer products made therefrom; and articles containing or made from same.
Abstract:
An ethylene-based polymer composition includes units derived from ethylene, units derived from a comonomer, and an optionally units derived from a termonomer. The comonomer is a monocyclic organosiloxane (MOCOS) of formula (I) [R1, R2SiO2/2]n wherein n is an integer greater than or equal to 3, each R1 is independently a (C2-C4) alkenyl or a H2C═C(R1a)—C(═O)—O—(CH2)m— wherein R1a is H or methyl, m is an integer from 1 to 4, and each R2 is independently H, (C1-C4) alkyl, phenyl, or R1.
Abstract:
The present disclosure relates to a process for preparing an olefin-acrylate block copolymer, the process comprising: a) performing reversible addition-fragmentation chain-transfer (RAFT) polymerization by combining RAFT materials comprising an acrylate monomer, a radical initiator, and a RAFT agent, thereby forming a macroinitiator; and b) combining reaction materials comprising an alpha-substituted acrylate, a radical initiator, and the macroinitiator, thereby forming the olefin-acrylate block copolymer.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition is an ethylene-based polymer composition formed by high pressure (greater or equal to 100 MPa) free radical polymerization. The composition includes ethylene monomer and a mixture of hydrocarbon-based molecules. Each hydrocarbon-based molecule includes three or more internal alkene groups.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes an olefin-based polymer and from 0.15 wt % to 15 wt % of an odor suppressant. The odor suppressant includes (i) from 0.05 wt % to 2 wt % of a metal oxide having a band gap greater than 5.0 electron volts (eV), and (ii) from 0.1 wt % to 13 wt % of an acid copolymer. The ratio of metal oxide to acid copolymer is from 1:20 to 1:1. Weight percents are based on the total weight of the composition.
Abstract:
The present disclosure provides a polymer composition. In an embodiment, an ethylene-based polymer composition is provided and is formed by high pressure (greater than or equal to 100 MPa), free-radical polymerization, by reacting: ethylene monomer and a mixture of hydrocarbon-based molecules, with each hydrocarbon-based molecule comprising three or more terminal alkene groups.