Abstract:
Techniques for attachment of sapphire substrates with other materials and the resulting structures are provided. One embodiment may take the form of an attachment method including creating an aperture within a sapphire substrate and filling the aperture with an attachment material. The method also includes mechanically coupling a member to the sapphire substrate using the attachment material.
Abstract:
Pressure sensing systems comprising bulk-solidifying amorphous alloys and pressure-sensitive switches containing bulk-solidifying amorphous alloys. The bulk-solidifying amorphous alloys are capable of repeated deformation upon application of pressure, and change their electrical resistivity upon deformation, thereby enabling measurement of the change in resistivity and consequently, measuring the deformation and amount of pressure applied.
Abstract:
Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.
Abstract:
Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.
Abstract:
A metal enclosure has a surface region which is coated with cladding material using a laser cladding process. The metal enclosure can form at least a portion of an electronic device housing. All or part of one or more surfaces of the enclosure can be coated with cladding material. The coating of cladding material can be varied at selective regions of the enclosure to provide different structural properties at these regions. The coating of cladding material can be varied at selective regions to provide contrast in cosmetic appearance.
Abstract:
Anodized electroplated aluminum structures and methods for making the same are disclosed. Cosmetic structures according to embodiments of the invention are provided by electroplating a non-cosmetic structure with aluminum and then anodizing the electroplated aluminum. This produces cosmetic structures that may possess desired structural and cosmetic properties and that may be suitable for use as housing or support members of electronic devices.
Abstract:
Connectors for electronic devices are provided with embedded antennas. The connectors may be 30-pin connectors. A 30-pin connector may have a conductive shell structure that defines a cavity and a planar dielectric member that extends into the cavity and that has contact pins. An antenna may be formed from an antenna resonating element on the planar dielectric member and an antenna ground formed from the conductive shell structure. An antenna may be formed from a slot in the conductive shell. The antenna and the pins may be electrically coupled to an electronic device using a cable.
Abstract:
Method and apparatus for implementing multiple push buttons in a user device are disclosed. The method includes detecting a location of a user input using one or more touch sensors, detecting a force of the user input using a switch, and generating a signal for representing one of the push buttons being pressed according to with the location and force of the user input.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
Various embodiments for magnetic detent assemblies provide for detent devices with improved performance and manufacturability. In one embodiment, magnetic detent assemblies provide for custom detent positions and custom force profiles by including a pair of unitary magnetic components each having a special geometry. In an embodiment, the changing area of overlap (and hence magnetic flux) between the magnetic components can give rise to the custom detent positions and custom force profiles. In a specific embodiment, the magnetic components can comprise an N-point star shaped geometry, where the number and distribution of the start wings can be varied to define customized detent positions and the contour of the star wings can be varied to create customized force profiles. In other embodiments, devices such as laptop computers and docking stations for handheld electronic devices can implement multi-position detent hinges with the magnetic detent assemblies.