Abstract:
A method and an apparatus for controlling an electro-mechanical transmission selectively operative in a plurality of fixed gear modes and continuously variable modes is provided. The exemplary transmission comprises first and second electrical machines and a hydraulic circuit comprising a plurality of pressure control devices and flow management valves. The method comprises monitoring an operating temperature of the electrical machines. A cooling flow rate in the hydraulic circuit effective to reduce the operating temperature of the electrical machines is determined. Availability of active cooling for each of the electrical machines is determined. Hydraulic flow in the hydraulic circuit is selectively controlled.
Abstract:
A method for controlling an electromechanical transmission includes monitoring a current hydraulic circuit oil temperature, monitoring a current state of flow management valves, monitoring a command for cooling of electric machines, monitoring a desired transmission operating range state, utilizing a state machine to determine a sequence for controlling positions of the flow management valves to achieve the desired transmission operating range state based upon the monitored properties.
Abstract:
An electromechanical transmission includes a rotor supported by a rotor hub that has at least one passage formed therein for providing cooling fluid flow to the rotor. Preferably, cooling fluid is provided to the passage through an orifice to control flow rate. An inner diameter of the rotor is supported by the rotor hub and fluid is pooled by the rotor hub opposite the rotor inner diameter for cooling thereof. Preferably, fluid is thrown by centrifugal force from the rotor hub onto rotor ends and then onto an inner diameter side of stator windings of a stator surrounding the rotor. A method of cooling an electromechanical transmission is also provided.
Abstract:
An assembly and method is provided for reducing clutch wear due to centrifugal apply pressure within a clutch-apply cavity. The assembly comprises a rotatable clutch housing, a clutch-apply piston disposed within a clutch-apply cavity, and a balance piston. The balance and apply pistons define a balance cavity including a liquid fill channel and a dedicated air exhaust channel having a control radius configured to at least partially offset or compensate for the centrifugal apply force generated within the clutch-apply cavity when the clutch assembly rotates. The method includes configuring the balance cavity with an exhaust channel for exhausting fluid, and providing the exhaust channel with a control radius determined by the innermost radius of rotating fluid within the balance cavity as measured with respect to the centerline of rotation of the clutch assembly, the control radius being suitable for exhausting any excess of centrifugal balance force over centrifugal apply force.
Abstract:
A servo valve for shifting a transmission between a park and out of park position includes a valve housing and a park servo. A first and second solenoid is disposed in the valve housing for transmitting a respective first or second signal to shift the transmission to the respective first or second state of operation. The park servo is fluidly connected to the transmission and is responsive to the first and second signals to shift the transmission to the respective positions. Fluid pressure within the valve housing moves a valve member therein to move a piston within the park servo to shift the transmission to the corresponding position. A third solenoid transmits a third signal in combination with the second signal to latch and hold the valve member in the corresponding position.
Abstract:
A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to at least one of the clutches.
Abstract:
A method for controlling cooling of one or more motor/generators includes monitoring the stator temperature of the motor/generator and power loss of the motor/generator. Total cooling flow is estimated from the monitored stator temperature and power loss and a cooling line pressure is determined from a lookup table. The lookup table includes total cooling flow as a function of cooling line pressure. The method further determines a non-cooling line pressure and combines the non-cooling line pressure with the cooling line pressure to determine a first total line pressure. The transmission is commanded to operate at the first total line pressure.
Abstract:
An electrically variable transmission (EVT) selectively establishes various EVT modes and a neutral mode. The EVT includes a source of pressurized fluid, fluid-actuated clutches, various solenoid-actuated valves including trim valves and blocking valves adapted to control a flow of pressurized fluid to the clutches to establish the transmission operating modes, and an electronic control unit (ECU). The ECU actuates different combinations of the solenoid-actuated valves to establish the different transmission modes. The solenoid-actuated valves are configured in such a manner as to provide the EVT with one or more default operating modes in the event the ECU temporarily loses electrical power. Depending on the particular configuration, the default modes can be the neutral mode alone, or the neutral mode combined with one or more of the EVT modes, with the EVT modes enabled by providing one or both of the blocking valves with a latching feature.
Abstract:
The present invention provides advanced hardware diagnostic detection for the clutch control components in a hydraulic control module of a multi-mode hybrid transmission. The detection scheme of the present invention utilizes pressure switch sensors to detect the position of each of the valves associated with the clutch control mechanization. The mechanization of these sensors with the valves provides the ability to clearly define the position of each of the valves, while also enabling the transmission electro-hydraulic control module (TEHCM) to diagnose the state of health of each pressure switch. This will allow the diagnostics to differentiate between a failed switch and a failed (e.g., “stuck” or “out of position”) valve. The present invention offers the ability to safely diagnose the clutch control components in a power transmission, while preventing unexpected and undesired shift sequencing within the transmission.
Abstract:
A method and apparatus to control an electrically variable transmission, by dynamically controlling system main hydraulic clutch pressures, based upon required clutch capacity, as determined by output load of the transmission. Included is a method to regulate hydraulic clutch pressure in an electrically variable transmission equipped with at least one clutch. This comprises monitoring magnitude of slippage of the clutches and controlling hydraulic boost pressure based upon the magnitude of clutch slippage. Controlling hydraulic boost pressure based upon the magnitude of clutch slippage comprises monitoring operator inputs, determining a requested operator torque command, and determining a required main boost pressure. The main boost pressure is based upon the requested operator torque command, the monitored operator inputs, parameters of the EVT and clutches. Commanded main boost pressure is then determined based upon the determined required main boost pressure.