Cane-Based Multicore Optical Fiber and Methods of Forming

    公开(公告)号:US20220371952A1

    公开(公告)日:2022-11-24

    申请号:US17749244

    申请日:2022-05-20

    Abstract: A method of manufacturing an optical fiber, the method including mounting a glass sleeve in a selective etching apparatus. The sleeve comprising one or more axial through-holes, and the etching apparatus comprising a first end cap with a central aperture disposed therethrough, the first end cap being attached to a first surface of the sleeve. The method further including exposing the sleeve to an acid solution such that a first portion of the first surface is exposed to the acid solution and a second portion of the first surface is not exposed to the acid solution. The first portion being adjacent to the central aperture when the sleeve is mounted in the selective etching apparatus, and the second portion being covered by the first end cap when the sleeve is mounted in the selective etching apparatus.

    MULTICORE RING FIBERS FOR QUANTUM SYSTEMS, AND SUCH SYSTEMS

    公开(公告)号:US20210103090A1

    公开(公告)日:2021-04-08

    申请号:US17034014

    申请日:2020-09-28

    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.

    LOW ATTENUATION OPTICAL FIBERS WITH AN F-GRADED INDEX CORE
    15.
    发明申请
    LOW ATTENUATION OPTICAL FIBERS WITH AN F-GRADED INDEX CORE 有权
    低衰减光纤光纤与F级灰度指数芯

    公开(公告)号:US20140241684A1

    公开(公告)日:2014-08-28

    申请号:US13803578

    申请日:2013-03-14

    CPC classification number: G02B6/0281 G02B6/02014 G02B6/02019 G02B6/0288

    Abstract: An optical fiber is provided that includes a fiber configured to transmit optical data in a plurality of modes or in a single mode; a core region in the fiber that comprises fluorine-doped silica; and a cladding in the fiber that surrounds the core region and that comprises fluorine-doped silica. The core region has a graded refractive index profile with an alpha of about 0.5 to 5. The core of the fiber may be set with a radius of approximately 6 to 50 microns. The cladding may also comprise one or a plurality of layers, including trench or moat regions of a relatively lower refractive index. Still further, an inner cladding may be doped with fluorine at a concentration greater than that in the core region. An outer cladding can comprise silica with fluorine at a concentration below or equal to that in the inner cladding.

    Abstract translation: 提供了一种光纤,其包括被配置为以多种模式或单个模式传输光学数据的光纤; 纤维中的核心区域,其包含氟掺杂二氧化硅; 以及在纤维中围绕芯区域并且包括掺氟二氧化硅的包层。 核心区域具有约0.5至5的α的渐变折射率分布。纤维的芯可以设置为约6至50微米的半径。 包层还可以包括一个或多个层,包括相对较低折射率的沟槽或护环区域。 此外,内包层可以以比核心区域中的浓度更大的浓度掺杂氟。 外包层可以包含浓度低于或等于内包层中的氟的二氧化硅。

    Vacuum-based methods of forming a cane-based optical fiber preform and methods of forming an optical fiber using same

    公开(公告)号:US11370689B2

    公开(公告)日:2022-06-28

    申请号:US16791708

    申请日:2020-02-14

    Abstract: The vacuum-based methods of forming an optical fiber preform include applying a vacuum to a preform assembly. The preform assembly has at least one glass cladding section with one or more axial through holes, with one or more canes respectively residing in the one or more axial through holes. The opposite ends of the at least one glass cladding section are capped to define a substantially sealed internal chamber. A vacuum is applied to the substantially sealed internal chamber to define a vacuum-held preform assembly. The methods also include heating the vacuum-held preform assembly to just above the glass softening point to consolidate the vacuum-held preform to form the cane-based glass preform. An optical fiber is formed by drawing the cane-based glass preform. The same furnace used to consolidate the vacuum-held preform can be used to draw the optical fiber.

    Multicore ring fibers for quantum systems, and such systems

    公开(公告)号:US11137539B2

    公开(公告)日:2021-10-05

    申请号:US17034014

    申请日:2020-09-28

    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.

Patent Agency Ranking