Multicore ring fibers for quantum systems, and such systems

    公开(公告)号:US11137539B2

    公开(公告)日:2021-10-05

    申请号:US17034014

    申请日:2020-09-28

    IPC分类号: G02B6/02 G02B6/36

    摘要: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.

    MULTICORE RING FIBERS FOR QUANTUM SYSTEMS, AND SUCH SYSTEMS

    公开(公告)号:US20210103090A1

    公开(公告)日:2021-04-08

    申请号:US17034014

    申请日:2020-09-28

    IPC分类号: G02B6/02

    摘要: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.

    Optical film structures and articles for hidden displays and display devices

    公开(公告)号:US11378719B2

    公开(公告)日:2022-07-05

    申请号:US17004562

    申请日:2020-08-27

    摘要: An article is described herein that includes: a translucent substrate comprising opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising an outer surface and a plurality of periods such that each period comprises an alternating low refractive index layer and high refractive index layer. The article exhibits a hardness of 10 GPa or greater measured at an indentation depth of about 100 nm by a Berkovich Indenter Hardness Test. Further, the article exhibits a single side average photopic light reflectance of at least 50% of non-polarized light as measured at the outer surface from near-normal incidence to an incident angle of 60 degrees over a portion of at least 10 nm within the visible spectrum. In addition, each low refractive index layer comprises SiO2 or doped-SiO2 and each high refractive index layer comprises AlOxNy, SiOxNy, SiuAlvOxNy, SiNx or ZrO2.

    OPTICAL FILM STRUCTURES AND ARTICLES FOR HIDDEN DISPLAYS AND DISPLAY DEVICES

    公开(公告)号:US20210063607A1

    公开(公告)日:2021-03-04

    申请号:US17004562

    申请日:2020-08-27

    IPC分类号: G02B1/00 G02F1/13357

    摘要: An article is described herein that includes: a translucent substrate comprising opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising an outer surface and a plurality of periods such that each period comprises an alternating low refractive index layer and high refractive index layer. The article exhibits a hardness of 10 GPa or greater measured at an indentation depth of about 100 nm by a Berkovich Indenter Hardness Test. Further, the article exhibits a single side average photopic light reflectance of at least 50% of non-polarized light as measured at the outer surface from near-normal incidence to an incident angle of 60 degrees over a portion of at least 10 nm within the visible spectrum. In addition, each low refractive index layer comprises SiO2 or doped-SiO2 and each high refractive index layer comprises AlOxNy, SiOxNy, SiuAlvOxNy, SiNx or ZrO2.