Abstract:
A semiconductor integrated circuit (IC) chip includes an IC chip body and a nano-structure-surface passivation film. The IC chip body has at least one surface. The nano-structure-surface passivation film is formed on the at least one surface. The nano-structure-surface passivation film including nano-particles and a carrier resin protects the IC chip body from encountering any external interference.
Abstract:
A structure of sweep-type fingerprint sensing chip capable of resisting electrostatic discharge (ESD) includes a semiconductor substrate, and a sweep-type fingerprint sensing chip formed on the semiconductor substrate, a polymer layer and a conducting metal layer. The sweep-type fingerprint sensing chip includes a sensing array region and a peripheral circuit region. The sensing array region has an exposed area for sensing a plurality of fingerprint fragment images as a finger sweeps thereacross. The peripheral circuit region, which is formed on the substrate and located around the sensing array region, controls an operation of the sensing array region. The polymer layer is disposed on the peripheral circuit region and has a flat and smooth outer surface. The conducting metal layer is disposed on the flat and smooth outer surface of the polymer layer. The conducting metal layer discharges the approaching electrostatic charges to the ground to avoid damaging of the sensing chip.
Abstract:
A device includes a semiconductor substrate, and a capacitive sensor having a back-plate, wherein the back-plate forms a first capacitor plate of the capacitive sensor. The back-plate is a portion of the semiconductor substrate. A conductive membrane is spaced apart from the semiconductor substrate by an air-gap. A capacitance of the capacitive sensor is configured to change in response to a movement of the polysilicon membrane.
Abstract:
A surface processing method for a chip device includes the steps of: (a) providing a chip body having at least one exposed surface; (b) applying a polymeric monomer solution having a plurality of monomers to the at least one surface of the chip body, wherein each of the monomers has a soft fragment fluorocarbon (FC) polymer end and a polar silane group; and (c) curing the polymeric monomer solution to remove solvents out under proper environment settings, and to polymerize the monomers into a solid polymer layer on the at least one surface. The solid polymer layer thus has an exposed surface having a soft fragment FC polymer structure for protecting the chip body from encountering any external or internal interference.
Abstract:
A microelectromechanical system (MEMS) device may include a MEMS structure above a first substrate. The MEMS structure comprising a central static element, a movable element, and an outer static element. A portion of bonding material between the central static element and the first substrate. A second substrate above the MEMS structure, with a portion of a dielectric layer between the central static element and the second substrate. A supporting post comprises the portion of bonding material, the central static element, and the portion of dielectric material.
Abstract:
An ink-jet print head with a chamber sidewall heating mechanism includes a substrate, an insulation layer on the substrate, a main channel penetrating through the substrate, a plurality of V-shaped micro-channels each having a diverging end linking with the main channel and a converging end linking with an ink chamber on the insulation layer, and a nozzle plate with a plurality of orifices formed on the ink chamber. The V-shaped micro-channels are perpendicular to the main channel and parallel to and arranged on the insulation layer. Each chamber sidewall includes a heater structure to evaporate ink in the chamber to form a bubble, which pushes the ink in the chamber to eject from the orifice.
Abstract:
A chip-type sensor against ESD and stress damages and contamination interference includes a substrate structure and a protection layer covering over the substrate structure. The protection layer includes, from bottom to top, a first layer for providing a first stress against the substrate structure, a second layer for providing a second stress against the substrate structure, and a third layer for providing a third stress against the substrate structure. The first stress and the third stress belong to one of a tensile stress and a compressive stress, and the second stress belongs to the other of the tensile stress and the compressive stress.