Abstract:
A circuit includes a first wireless interface circuit that transceives packetized data between a host module and a first external device in accordance with a first wireless communication protocol, wherein the first wireless protocol carries wireless telephony data for communication with a wireless telephony network. A second wireless interface circuit transceives packetized data between the host module and a second external device in accordance with a second wireless communication protocol. The second wireless interface circuit includes at least one module that is shared with first wireless interface circuit. The first wireless interface circuit and the second wireless interface circuit operate in accordance with a wireless interface schedule that includes a first time interval where the first wireless interface device and the second wireless interface device contemporaneously use the at least one module.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
A method of communicating data in a Bluetooth™ low energy (BLE) module is provided. The method includes modulating an outbound communication signal into a modulated signal with a particular modulation scheme based on a modulation type, and transmitting the modulated signal to a remote device via a wireless communication connection associated with the modulation type. The method also includes receiving an inbound radio frequency (RF) signal, determining if the inbound RF signal is associated with a modulation type, and demodulating the inbound RF signal with a particular modulation scheme based on the modulation type if the inbound RF signal is determined to be associated with a modulation type. In some aspects, the inbound RF signal and outbound modulated signal have symbol rates of 2 Megasymbols per second. In some implementations, the method includes switching between a legacy BLE system and an enhanced rate BLE system.
Abstract:
In collocated radios, interference is mitigated to permit concurrent radio operation. In response to detection of imminent transmission of interfering wireless (i.e., RF jammer) signals, gain settings of one or more stages of front-end receiver amplifiers may be quickly configured to permit concurrent frequency division operation instead of consecutive time-division operation. This expansion of concurrent operation may improve communication bandwidth and/or may produce reliable, consistent results. Gain control responsive to detection of imminent RF jamming may maintain amplification in a linear range where interference can be filtered out. Receiver gain may be shifted from a default high gain or high sensitivity setting to lower gain to maintain integrity of a signal of interest (SoI), which avoids clipping, distortion and unwanted products caused by a high power jamming signal that could otherwise make it impossible to recover the SoI. This mitigation technique supplements and/or replaces other interference mitigation techniques.
Abstract:
Collaborative coexistence of co-located mobile WiMAX, wireless LAN, and/or Bluetooth radios. Within a communication device that includes multi-protocol communication capability, the various radio modules included within such a communication device operate cooperatively such that collisions are avoided between those various radios. When a first of the radio modules operates as governed by a relatively rigid frame structure, a second of the radio modules capitalizes upon that predetermined nature (of the relatively rigid frame structure) to support communication during times in which that first radio module has a lower level of activity (e.g., turned off completely, within a power savings mode, in a sleep mode, etc.). The radio module operation is performed within a time-orthogonal manner, such that multiple radio modules are not attempting to transmit or receive simultaneously. Moreover, CTS2SELF operation can be employed alone or in conjunction with power savings operation of co-located radios within a communication device.
Abstract:
A method includes determining that an antenna shared between a Bluetooth transceiver and a WLAN transceiver is available to the WLAN transceiver based on an activity signal associated with the Bluetooth transceiver. Access to the shared antenna is provided to the WLAN transceiver based on the determination, and the WLAN transceiver is configured to use diversity in transacting WLAN signals via a plurality of antennas, including the shared antenna. Access to the shared antenna is transferred from the WLAN transceiver to the Bluetooth transceiver based on the activity signal.
Abstract:
A Bluetooth low energy (BLE) device receives advertising packets from an advertising BLE device. The BLE device filters the received advertising packets utilizing hardware to search for the advertiser. If the advertiser is not found by the hardware, the packet filtering continues utilizing firmware. Device identity information, comprising non-private and/or private device identities, of preferred BLE devices is partitioned to form a different white list for the hardware, firmware, and host, respectively, to concurrently support privacy and white listing. If the advertiser is found by the hardware, the hardware sends a response to the advertiser following a successful CRC check performed in the hardware. If the advertiser is found by the firmware, the device identity information of the advertiser is inserted in the white list for the hardware. The host may be awakened based on the device configuration and/or attribute type information of the received advertising packets.
Abstract:
In collocated radios, interference is mitigated to permit concurrent radio operation. In response to detection of imminent transmission of interfering wireless (i.e., RF jammer) signals, gain settings of one or more stages of front-end receiver amplifiers may be quickly configured to permit concurrent frequency division operation instead of consecutive time-division operation. This expansion of concurrent operation may improve communication bandwidth and/or may produce reliable, consistent results. Gain control responsive to detection of imminent RF jamming may maintain amplification in a linear range where interference can be filtered out. Receiver gain may be shifted from a default high gain or high sensitivity setting to lower gain to maintain integrity of a signal of interest (SoI), which avoids clipping, distortion and unwanted products caused by a high power jamming signal that could otherwise make it impossible to recover the SoI. This mitigation technique supplements and/or replaces other interference mitigation techniques.
Abstract:
A coexistence signaling scheme for radio communications is described. In one embodiment, a method for coexistence signaling includes establishing first communications and second communications with separate access points or base stations. The method further includes determining protocol timings of the first and second communications. Based on various communications parameters, protocol timings, and identified interference conditions, the method includes generating one or more priority signals to manage the first and second communications. According to certain aspects, overlapping channel conditions can be avoided while maintaining acceptable communications data throughput.
Abstract:
A host device may be enabled to support a plurality of wireless interfaces, wherein some of these interfaces may be utilized to support human interface device (HID) based communication. The host device may be enabled to monitor activity of HID devices based on communications via HID capable wireless interfaces, may predict future use of the HID devices based on the monitoring, and may manage sniff communication that is utilized to track and/or detect activities in the HID devices. The management of the sniff communication may comprise adjusting characteristics of the sniff communication to enable improving throughput of other wireless interfaces available via the host device that may be affected by the sniff communication. The adjustment of the characteristics of sniff communication may comprise adjusting, statically and/or dynamically, length of sniff intervals and/or designating of sniff packets as high priority requests.