Abstract:
An array substrate and a manufacturing method thereof, a display device and a thin film transistor are provided. The method includes forming a pattern that includes an active layer, a pixel electrode and a data line on a base substrate; forming a pattern that includes a gate insulating layer and at least two gate via-holes therein, the at least two gate via-holes are located in regions in the gate insulating layer that correspond to outer surroundings of the active layer and do not overlap with areas where the pixel electrode and the data line are located; forming a pattern that includes a gate line and at least two gate electrodes, the at least two gate electrodes are connected to the gate line, and are provided in the at least two gate via-holes, respectively. With this method, the fabricating process and the fabricating cost are saved.
Abstract:
An array substrate and a manufacturing method thereof and a display device are provided, and the array substrate comprises: a substrate (1); a thin film transistor, a passivation layer (5) and a transparent electrode (6), sequentially formed on the substrate, wherein a groove (51) is formed in an upper surface of the passivation layer (5), and the transparent electrode (6) is provided in the groove (51).
Abstract:
Provided are oxide thin-film transistor and display device employing the same, and method for manufacturing an oxide thin-film transistor array substrate. A source electrode and a drain electrode are located below an oxide active layer pattern, and a gate electrode is located below the source electrode and the drain electrode, and the gate insulating layer is located between the gate electrode and the source electrode/the drain electrode.
Abstract:
There are provided a thin film transistor and a manufacturing method thereof, an array substrate and a display device. The thin film transistor is formed on a base substrate, and includes a gate electrode, an active layer, a source electrode and a drain electrode, the gate electrode includes a first section, a second section and a third section, the first section and the third section correspond to locations of the source electrode and the drain electrode, respectively; the base substrate has two recesses formed therein, and the first section and the third section are situated in the two recesses, respectively; the first section and the third section are covered with a filling layer; the filling layer and the second section are covered with a gate insulating layer, the active layer, the source electrode and the drain electrode in sequence.
Abstract:
A quantum dot ink, a manufacturing method thereof and a quantum dot light emitting diode device are provided. The quantum dot ink includes a non-polar organic solvent, a surface tension modifier and a hydrophobic quantum dot, the quantum dot ink further includes a carrier transport material, wherein phase separation is present between the hydrophobic quantum dot and the carrier transport material. After completing ink-jet printing the quantum dot ink, phase separation occurs between the hydrophobic quantum dot and the carrier transport material. Thus, the two-layer structure of a hydrophobic quantum dot layer and a carrier transport material layer is formed through one process. Not only a quantum dot light emitting device is manufactured by the method of ink-jet printing, but also the operation is simplified, and the manufacturing cost of the quantum dot light emitting device is reduced.
Abstract:
The present invention provides an open head mount display device and a display method thereof, relates to the field of head mount display technology, and can solve technical problems (such as a tedious operation, a poor display effect, an inaccurate position of the display image or the like) of the open head mount display device in the prior art. The open head mount display device of the present invention comprises: a display unit for providing a display image to user's eyes; an image acquisition unit for acquiring an image of an external object; an image analysis unit for analyzing and determining a position of the external object relative to the user's eyes in accordance with the image acquired by the image acquisition unit; and an image adjusting unit for adjusting the display image in accordance with an analysis result of the image analysis unit.
Abstract:
The present invention provides a TFT, an array substrate and a display device. The TFT includes a gate electrode, a source electrode, a drain electrode, and a semiconductor layer. The source electrode and the drain electrode are arranged on different layers. The semiconductor layer is in electrical connection to the source electrode and the drain electrode, respectively; wherein, a region on the semiconductor layer which is corresponding to a region between the source electrode and the drain electrode is a channel region. The present invention also provides an array substrate and a display device comprising the on TFT.
Abstract:
An array substrate, a method for fabricating the same and a display device are disclosed. The array substrate comprises a plurality of gate lines and a plurality of data lines which intersect each other to define a plurality of pixel regions, each of the pixel regions comprises a thin film transistor and further comprises: a base substrate; more than one protrusion disposed apart from each other on the base substrate; a first electrode layer comprising at least one first electrode strip disposed in a gap between adjacent protrusions; a second electrode layer comprising at least one second electrode strip disposed on the protrusions.
Abstract:
An array substrate and manufacturing method thereof, and a display device are provided. The array substrate comprises a TFT, an isolating layer (M), a pixel electrode (12) and a via (Q) formed through the isolating layer (14). A drain (6) of the TFT is electrically connected with the pixel electrode (12) through the via (Q). A first light blocking layer (14a) is formed on the pixel electrode (12) inside the via (Q). In the array substrate of the present invention, display effect deterioration due to the light reflection on pixel electrode inside the via is avoided by forming the light blocking layer on the pixel electrode inside the via. At the same time, prior to manufacturing the light blocking layer, a barrier layer is formed first to guarantee no residual of light blocking layer will be left on the substrate, thereby improving display performance of the display device.