Abstract:
An array substrate includes a gate line, a common electrode line, a common electrode and a pixel electrode arranged on a base substrate. The common electrode is electrically connected to the common electrode line through a common electrode via-hole, and the common electrode includes a hollowed-out portion and a reserved portion at a region corresponding to the common electrode via-hole. The reserved portion is arranged between the gate line adjacent to the common electrode line and the pixel electrode adjacent to the common electrode line, and electrically connected to the common electrode line through the common electrode via-hole. The reserved portion does not overlap the gate line or the pixel electrode. The hollowed-out portion is at least arranged at a side of the reserved portion adjacent to the gate line and/or pixel electrode and between the reserved portion and the gate line and/or the pixel electrode.
Abstract:
A method of manufacturing a low temperature polycrystalline silicon thin film and a thin film transistor, a thin film transistor, a display panel and a display device are provided. The method includes: forming an amorphous silicon thin film (01) on a substrate (1); forming a pattern of a silicon oxide thin film (02) covering the amorphous silicon thin film (01), a thickness of the silicon oxide thin film (02) located at a preset region being larger than that of the silicon oxide thin film (02) located at other regions; and irradiating the silicon oxide thin film (02) by using excimer laser to allow the amorphous silicon thin film (01) forming an initial polycrystalline silicon thin film (04), the initial polycrystalline silicon thin film (04) located at the preset region being a target low temperature polycrystalline silicon thin film (05). The polycrystalline silicon thin film has more uniform crystal size.
Abstract:
The present disclosure relates to the field of display technology, and provides an array substrate, its manufacturing method and a display device. A signal line on the array substrate includes at least two conductive layers electrically connected to each other. When one of the conductive layers is broken, a signal may be transmitted through the other conductive layer(s). As a result, it is able to improve the reliability of the electrical connection of the signal line, thereby to improve the yield of the display device. Further, the plurality of conductive layers of the signal line is formed simultaneously in an existing process for manufacturing the conductive layer patterns for the array substrate, so it is unnecessary to form the signal line separately, and thereby the manufacturing process is simplified.
Abstract:
A phosphoryl derivative, the use, an organic light-emitting diode, and a display apparatus. A phosphoryl group of the phosphoryl derivative is directly bonded to two substituted or unsubstituted aryl groups, and at least is directly bonded to or is indirectly bonded via a bridge group to a non-conjugated substituent group.
Abstract:
An organic electroluminescent device, a display panel, and a display device are disclosed. The organic electroluminescent device includes: an anode and a cathode disposed opposite to each other, a light emitting layer located between the anode and the cathode, an electron blocking layer located between the light emitting layer and the anode, and a hole transport layer located between the electron blocking layer and the anode. The light emitting layer includes an exciplex formed by mixing an electron-type host material and a hole-type host material, and a guest material with which the exciplex is doped. The electron mobility of the hole transport layer is greater than that of the electron blocking layer.
Abstract:
A display panel and a display device are provided. The display panel includes a first color sub-pixels and a second color sub-pixel. The first color sub-pixel includes a first effective light emitting region, the second color sub-pixel includes a second effective light emitting region. The first color sub-pixel includes a first color light emitting layer, the second color sub-pixel includes a second color light emitting layer, for one second effective light emitting region, along the length direction, a difference between the maximum size of the second color light emitting layer and the maximum size of the second effective light emitting region is a first difference, and along the width direction, a difference between the maximum size of the second color light emitting layer and the maximum size of the second effective light emitting region is a second difference, and the first difference is less than the second difference.
Abstract:
Provided are an organic light emitting device and a display apparatus. An organic light emitting device, including an anode, a cathode, and an emitting layer disposed between the anode and the cathode; wherein a hole transport layer and an electron blocking layer are disposed between the anode and the emitting layer; the hole transport layer and the electron blocking layer satisfy: |HOMOHTL−HOMOEBL|≤0.2 eV wherein HOMOHTL is a highest occupied molecular orbital, HOMO energy level of the hole transport layer and HOMOEBL is a HOMO energy level of the electron blocking layer.
Abstract:
The present disclosure provides a driving substrate, a method for preparing the same, and a flexible display device. The driving substrate includes: a base substrate; a first driving function layer arranged on a first surface of the base substrate, the first driving function layer including a plurality of driving thin film transistors and a plurality of signal wirings, and at least one of the plurality of signal wirings being of a single-layer structure and having a thickness greater than a threshold; a pad layer arranged on a surface of the first driving function layer away from the base substrate, the pad layer including a plurality of first pads and a plurality of second pads, and each first pad being connected to a first electrode of the corresponding driving thin film transistor and each second pad being connected to a common electrode line in the plurality of signal wirings.
Abstract:
The present disclosure relates to a thin film transistor and a manufacturing method thereof. The thin film transistor includes a substrate, a first semiconductor layer, a gate dielectric layer, and a gate electrode sequentially stacked on the substrate, the first semiconductor layer has a first portion located in a channel region of the thin film transistor and a second portion in source/drain regions of the thin film transistor and located on both sides of the first portion, the second portion and first sub-portions of the first portion adjacent to the second portion include an amorphous semiconductor material, a second sub-portion of the first portion between the first sub-portions includes a polycrystalline semiconductor material, and a second semiconductor layer located in the source/drain regions and in contact with the second portion, wherein a conductivity of the second semiconductor layer is higher than a conductivity of the amorphous semiconductor material.
Abstract:
The present disclosure provides a floating touch camera module, a display device and a touch method. The floating touch camera module includes: a lens with a light collection surface and a light emitting surface; an image sensor at one side of the light emitting surface of the lens, the image sensor configured to receive light rays from the lens and form sensing information; and an infrared cut filter film at one side of a light incident surface of the image sensor and configured to filter out infrared light rays. The infrared cut filter film is movable relative to the lens between a first position at which the infrared cut filter film directly faces the lens and a second position at which the infrared cut filter film is offset from the lens, thereby enabling the floating touch camera module to switch between a photographing mode and a touch mode.