摘要:
Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
摘要:
A semiconductor device comprises a drain, a body in contact with the drain, the body having a body top surface, a source embedded in the body, extending downward from the body top surface into the body, a trench extending through the source and the body to the drain, and a gate disposed in the trench, having a gate top surface that extends substantially above the body top surface. A method of fabricating a semiconductor device comprises forming a hard mask on a substrate having a top substrate surface, forming a trench in the substrate, through the hard mask, depositing gate material in the trench, where the amount of gate material deposited in the trench extends beyond the top substrate surface, and removing the hard mask to leave a gate structure that extends substantially above the top substrate surface.
摘要:
This invention discloses a method for manufacturing a semiconductor power device on a semiconductor substrate supporting a . drift region composed of an epitaxial layer. The method includes a first step of growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; a second step of applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; and a third step of repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers, each of which is implanted with the dopant regions of the alternating conductivity types. Then the manufacturing processes proceed by carrying out a device manufacturing process on a top side of the epitaxial layer on top of the dopant regions of the alternating conductivity types with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
摘要:
Fabricating a semiconductor device includes forming a hard mask on a substrate having a top substrate surface, forming a trench in the substrate through the hard mask, depositing gate material in the trench, where the amount of gate material deposited in the trench extends beyond the top substrate surface, and removing the hard mask to leave a gate having a gate top surface that extends substantially above the top substrate surface at least in center region of the trench opening, the gate having a vertical edge that includes an extended portion, the extended portion extending above the trench opening and being substantially aligned with the trench wall. It further includes implanting a body, implanting a plurality of source regions embedded in the body, forming a plurality of spacers that insulate the source regions from the gate, the plurality of spacers being situated immediately adjacent to the gate and immediately adjacent to respective ones of the plurality of source regions, wherein the plurality of spacers do not substantially extend into the trench and do not substantially extend over the trench, disposing a dielectric layer over the source, the spacers, the gate, and at least a portion of the body, forming a contact opening, and disposing metal to form a contact with the body at the contact opening.
摘要:
This invention discloses a method for manufacturing a semiconductor power device on a semiconductor substrate supporting a . drift region composed of an epitaxial layer. The method includes a first step of growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; a second step of applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; and a third step of repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers, each of which is implanted with the dopant regions of the alternating conductivity types. Then the manufacturing processes proceed by carrying out a device manufacturing process on a top side of the epitaxial layer on top of the dopant regions of the alternating conductivity types with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
Fabricating a semiconductor device includes forming a hard mask on a substrate having a top substrate surface, forming a trench in the substrate through the hard mask, depositing gate material in the trench, where the amount of gate material deposited in the trench extends beyond the top substrate surface, and removing the hard mask to leave a gate having a gate top surface that extends substantially above the top substrate surface at least in center region of the trench opening, the gate having a vertical edge that includes an extended portion, the extended portion extending above the trench opening and being substantially aligned with the trench wall. It further includes implanting a body, implanting a plurality of source regions embedded in the body, forming a plurality of spacers that insulate the source regions from the gate, the plurality of spacers being situated immediately adjacent to the gate and immediately adjacent to respective ones of the plurality of source regions, wherein the plurality of spacers do not substantially extend into the trench and do not substantially extend over the trench, disposing a dielectric layer over the source, the spacers, the gate, and at least a portion of the body, forming a contact opening, and disposing metal to form a contact with the body at the contact opening.
摘要:
This invention discloses a method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer. The method includes a first step of growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; a second step of applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; and a third step of repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers, each of which is implanted with the dopant regions of the alternating conductivity types. Then the manufacturing processes proceed by carrying out a device manufacturing process on a top side of the epitaxial layer on top of the dopant regions of the alternating conductivity types with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.