Abstract:
Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
Abstract:
Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A method of forming a polishing pad includes (a) dispensing droplets of a pre-polymer composition and droplets of a sacrificial material composition onto a surface of a previously formed print layer according to a predetermined droplet dispense pattern. The method includes (b) at least partially curing the dispensed droplets of the pre-polymer composition to form a print layer. The method includes (c) sequentially repeating (a) and (b) to form a polishing layer having a plurality of pore-features formed therein. The pre-polymer composition includes a multifunctional acrylate component. A curing rate of the dispensed droplets of the pre-polymer composition including the multifunctional acrylate component when exposed to a first dose of electromagnetic radiation is greater than a curing rate of the pre-polymer composition without the multifunctional acrylate component when exposed to the same first dose of electromagnetic radiation.
Abstract:
Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
Abstract:
Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
Abstract:
Embodiments of the present disclosure generally relate to LED pixels and methods of fabricating LED pixels. A device includes a backplane, at least three LEDs disposed on the backplane, subpixel isolation (SI) structures disposed defining wells of at least three subpixels, a reflection material is disposed on sidewalls and a top surface of the SI structures, at least three of the subpixels have a color conversion material disposed in the wells, an encapsulation layer disposed over the subpixel isolation structures and the subpixels, a light filter layer disposed over the encapsulation layer and micro-lenses disposed over the light filter layer and over each of the wells of the subpixels.
Abstract:
Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
Abstract:
Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.
Abstract:
Implementations disclosed herein generally relate to polishing articles and methods for manufacturing polishing articles used in polishing processes. More specifically, implementations disclosed herein relate to porous polishing pads produced by processes that yield improved polishing pad properties and performance, including tunable performance. Additive manufacturing processes, such as three-dimensional printing processes provides the ability to make porous polishing pads with unique properties and attributes.
Abstract:
Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
Abstract:
A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.