Abstract:
This document describes multicast communication between wireless devices. A scheduling frame may be wirelessly transmitted by a wireless device. The scheduling frame may include a multicast address indicating a group of intended receiving devices for a payload frame. The scheduling frame may further include scheduling information indicating an order for the group of intended receiving devices to transmit acknowledgement information for the payload frame. A payload frame may also be wirelessly transmitted by the wireless device. The payload frame may include payload information intended for the group of intended receiving devices. Additionally, acknowledgement frames may be wirelessly received by the wireless device from at least a subset of the group of intended receiving devices. The acknowledgement frames may be received according to the order indicated in the scheduling information.
Abstract:
An interface circuit in a device, e.g., an access point, may perform link adaptation. During operation, the interface circuit may provide a wake-up frame, e.g., a LP-WUR packet, associated with a channel in a band of frequencies, where the wake-up frame is intended for a wake-up radio in a recipient device. Then, the interface circuit may receive, from the recipient device, feedback information associated with a second channel in a second band of frequencies, where the feedback information is associated with a main radio in the recipient device. Based at least in part on the feedback information, the interface circuit may estimate one or more communication metrics associated with the channel in the band of frequencies. Moreover, based at least in part on the one or more communication metrics, the interface circuit may determine a data rate for use in communication via the channel in the band of frequencies.
Abstract:
Examples of the disclosure are directed to methods of managing power of various modules of an electronic device to prevent the voltage of the battery from falling to an undervoltage lockout (UVLO) threshold. In some examples, software operating on the electronic device or an associated electronic device (e.g., a paired electronic device) may assign power budgets to one or more modules, thereby preventing each module from drawing its maximum current capacity and causing the battery's voltage level to fall to the UVLO threshold. In some examples, a pre-UVLO threshold (i.e., a threshold higher than the UVLO threshold) may be used to modify the states of one or more modules to save power as the voltage of the battery approaches the UVLO threshold, but before the device must be fully powered off.
Abstract:
A client device and a host device may create a local connection for providing wide area network access, such as Internet access, to the client device. In some embodiments, the client device may have limited network capabilities and may not be able to access the Internet without the host device. The client device may provide its speed and direction in a message to potential host devices. A host device may calculate a suitability metric, based on the speed and direction of the client as well as connection properties of the networks, which indicates an ability for the host device to connect the client device to the Internet. The host device may provide the suitability metric within a connection request to the client device. Based on the suitability metric and/or other factors, the client device and the host device may establish the local connection.
Abstract:
A method for controlling transmission power in accordance with a total transmission power limit in a multi-radio wireless communication device including a master radio and a slave radio is provided. The method can include the wireless communication device determining, at the master radio, a transmission power of the master radio. The method can further include the wireless communication device providing information indicative of the transmission power of the master radio from the master radio to the slave radio. The method can additionally include determining, at the slave radio, an allowable transmission power for the slave radio. A sum of the allowable transmission power and the transmission power of the master radio may not exceed the total transmission power limit.
Abstract:
Examples of the disclosure are directed to methods of managing power of various modules of an electronic device to prevent the voltage of the battery from falling to an undervoltage lockout (UVLO) threshold. In some examples, software operating on the electronic device or an associated electronic device (e.g., a paired electronic device) may assign power budgets to one or more modules, thereby preventing each module from drawing its maximum current capacity and causing the battery's voltage level to fall to the UVLO threshold. In some examples, a pre-UVLO threshold (i.e., a threshold higher than the UVLO threshold) may be used to modify the states of one or more modules to save power as the voltage of the battery approaches the UVLO threshold, but before the device must be fully powered off.
Abstract:
A host device may include a first wireless communication circuit, a second wireless communication circuit including a proxy router, and a host processor communicatively coupled to the wireless communication circuits. The host device may receive, via the second wireless communication circuit, an advertisement message from a client device. The advertisement message may include a request for communication of data with a network. The host device may determine at least one of a communication policy preference of the host device and a network connection property of the host device. The proxy router may select the first or the second wireless communication circuit for use by the host device to communicate the data with the network. The host device may provide, via the second wireless communication circuit, a connection request to the client device, and then transfer, using the selected wireless communication circuit, the data between the client device and the network.
Abstract:
The embodiments set forth herein disclose techniques for enabling a user device to seamlessly establish a secure, high-bandwidth wireless connection with a vehicle accessory system to enable the user device to wirelessly stream user interface (UI) information to the vehicle accessory system. To implement this technique, a lower-bandwidth wireless technology (e.g., Bluetooth) is used as an initial means for establishing a Wi-Fi pairing between the user device and the vehicle accessory system. Wi-Fi parameters associated with a Wi-Fi network provided by the vehicle accessory system can be communicated to the user device using the lower-bandwidth wireless technology. A secure Wi-Fi connection can then be established between the user device and the vehicle accessory system using the provided Wi-Fi parameters. The embodiments also disclose a technique for enabling the user device to automatically reconnect with the vehicle accessory system in a seamless manner (e.g., when returning to a vehicle).
Abstract:
An electronic device that performs a scan is described. During operation, the electronic device may perform, using a scanning radio, the scan of a band of frequencies, where the scanning radio only receives frames. Then, the electronic device may receive, using the scanning radio, a beacon associated with a second electronic device, where the beacon includes information associated with operation of a third electronic device in a second band of frequencies. Next, the electronic device may perform, using a data radio, a second scan of the second band of frequencies based at least in part on the information, where the data radio transmits and/or receives second frames, and where the second scan is performed, at least in part, while the scan is performed. Note that the electronic device may not be associated with (or may not have a connection with) the second electronic device and/or the third electronic device.
Abstract:
During operation, an electronic device may perform, using a scanning radio, a scan of a band of frequencies, where the scanning radio only receives frames. Then, the electronic device may receive, using the scanning radio, a beacon frame associated with a second electronic device, where the beacon frame includes information associated with operation of a third electronic device in a second band of frequencies. Next, the electronic device may perform, using a data radio, a second scan of the second band of frequencies based at least in part on the information, where the data radio transmits and/or receives second frames, and where the second scan is performed, at least in part, while the scan is performed. Note that the electronic device may not be associated with (or may not have a connection with) the second electronic device and/or the third electronic device.