Abstract:
This application relates to systems, methods, and apparatus for using a computing device to perform payment transactions while the computing device is operating in a low power wallet mode during a low battery state of the computing device. During a low power wallet mode, various subsystems are prevented from receiving current from a battery of the computing device, while a near field communication (NFC) system of the computing device is provided with an operating current for detecting target systems. A target system and the NFC system can communicate during the low power wallet mode of the computing device, thereby allowing a user of the computing device to conduct payment transactions when the computing device is in a low power wallet mode. Such payment transactions can be useful if the user is ever stranded without enough power to fully operate the computing device and needs to pay for transportation.
Abstract:
Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.
Abstract:
Circuits, methods, and apparatus that react to brownout or near brownout conditions and mitigate complications that may result. Examples may turn off one or more circuits, such as a Wi-Fi transceiver when a brownout condition is reached or neared. Other examples may provide circuits, methods, and apparatus that proactively avoid brownout conditions. These examples may detect that a brownout condition may occur and take steps, such as Wi-Fi traffic shaping, to avoid them. Still further examples may react to brownout or near brownout conditions one or more times, then preemptively act to avoid further brownout conditions.
Abstract:
An apparatus for determining an average current through an inductor of a regulator circuit is disclosed. A counter unit may be configured to receive a control signal, which includes a plurality of pulses, from a Power Management Unit (PMU), and determine a number of pulses received during a predetermined period of time. A pulse sampler unit may determine a duration of a given pulse of the plurality of pulses. Circuitry may be configured to determine the average current through the inductor during the predetermined period of time dependent upon the number of pulses received during the predetermined period of time and the duration of the given pulse.
Abstract:
Embodiments of a computing system that may monitor energy usage are disclosed. The embodiments may provide a low overhead method for determining energy usage of a given application or process. Circuitry is configured to determine a respective energy for each of the plurality of operations and sum each respective energy for at least some of the plurality of operations to generate a normalized total. The circuitry may be further configured to scale the normalized total to generate an energy value, and store the energy value in a register. System software may then read the energy value from the register and determine an energy usage for at least one application dependent upon the energy value.
Abstract:
A method and apparatus for providing telemetry for use in power control functions is disclosed. A system includes an integrated circuit (IC) having a first power management circuit. The IC also includes a number of functional circuit blocks within a number of different power domains. A second power management circuit is implemented external to the IC and includes a number of voltage regulators. Each of the power domains is coupled to receive power from one voltage regulators. During operation, the first power management circuit may send commands requesting the change of one or more voltages provided to the IC. The second power management circuit may respond by performing the requested voltage change(s), and may also provide telemetry data to the first power management circuit. The second power management circuit may also provide telemetry data responsive to receiving a no operation command from the first power management circuit.
Abstract:
In an embodiment, a system includes a memory controller that includes a memory cache and a display controller configured to control a display. The system may be configured to detect that the images being displayed are essentially static, and may be configured to cause the display controller to request allocation in the memory cache for source frame buffer data. In some embodiments, the system may also alter power management configuration in the memory cache to prevent the memory cache from shutting down or reducing its effective size during the idle screen case, so that the frame buffer data may remain cached. During times that the display is dynamically changing, the frame buffer data may not be cached in the memory cache and the power management configuration may permit the shutting down/size reduction in the memory cache.
Abstract:
An electronic device may have a power system. The power system may receive power such as wireless power or wired power and may use a portion of the received power to charge a battery. Power consumption by control circuitry in the device can be adjusted by deactivating or activating processor cores in the control circuitry and by selectively starting or stopping software activities. By selectively reducing power consumption by circuitry in the electronic device other than battery charging circuitry in the power system that is charging the battery, additional power may be made available to charge the battery and/or battery capacity can be extended. The electronic device may reduce non-battery-charging activities in the device in response to information gathered with sensors such as motion and temperature information, information from the power system, information on device location, information on software settings, and other information.
Abstract:
An electronic device can include a processor programmed to detect connection of an external power source to the electronic device, determine an estimated disconnection time at which the external power source is expected to be disconnected from the electronic device, analyze power grid data corresponding to the external power source to identify one or more desired background processing intervals and one or more undesired background processing intervals prior to the estimated disconnection time, and perform background processing during the identified one or more desired battery charging intervals and inhibit background processing during the one or more undesired battery charging intervals. The processor can be programmed to determine an estimated disconnection time using a machine learning model. The processor can be programmed to inhibit background processing by reducing the amount of background processing during certain undesired background processing intervals or by preventing background processing during certain undesired background processing intervals.
Abstract:
Systems and methods are disclosed for scheduling threads on a processor that has at least two different core types, such as an asymmetric multiprocessing system. Each core type can run at a plurality of selectable voltage and frequency scaling (DVFS) states. Threads from a plurality of processes can be grouped into thread groups. Execution metrics are accumulated for threads of a thread group and fed into a plurality of tunable controllers for the thread group. A closed loop performance control (CLPC) system determines a control effort for the thread group and maps the control effort to a recommended core type and DVFS state. A closed loop thermal and power management system can limit the control effort determined by the CLPC for a thread group, and limit the power, core type, and DVFS states for the system. Deferred interrupts can be used to increase performance.