摘要:
In a method of fabricating a flash memory device, a lower capping conductive layer of a peri region is patterned. A step formed between a cell gate and a gate for a peri region transistor is decreased by controlling a target etch thickness of a hard mask. Thus, an impurity does not infiltrate into the bottom of the gate for the peri region transistor through a lost portion of a SAC nitride layer. Accordingly, a hump phenomenon of the transistor formed in the peri region can be improved. Furthermore, a leakage current characteristic of the transistor formed in the peri region can be improved.
摘要:
A method of forming a gate of a semiconductor device includes providing a semiconductor substrate over which a first conductive layer, a dielectric layer and a second conductive layer are formed. The second conductive layer is patterned to expose a part of the dielectric layer. A first protection layer is formed on sidewalls of the second conductive layer. A first etch process is performed to remove the exposed dielectric layer and to expose a part of the first conductive layer. A second protection layer is formed on sidewalls of the second conductive layer. A second etch process is performed to remove the exposed first conductive layer.
摘要:
A thin film transistor substrate includes an insulating substrate, a gate electrode formed on the insulating substrate, a first gate insulating film formed on the gate electrode and having an opening for exposing at least part of the gate electrode, a second gate insulating film covering the gate electrode exposed by the opening and having a larger dielectric constant than the first gate insulating film, a source electrode and a drain electrode disposed apart from each other in a central area of the second gate insulating film and defining a channel region there between, and an organic semiconductor layer formed in the channel region. A method for forming the TFT substrate is also provided. Thus, the present invention provides a TFT substrate in which a characteristic of a TFT is improved.
摘要:
A liquid crystal display is provided, which includes: a substrate; a field-generating electrode formed on the substrate; and a slope member formed on the substrate and having an inclination angle smaller than about 45 degrees.
摘要:
Disclosed is a composition for a gel polymer electrolyte, the composition comprising: (i) a cyclic compound as a first crosslinking agent, the cyclic compound containing a cyclic group at the center thereof and having at least three double bonds at the end thereof; (ii) a linear or branched compound as a second crosslinking agent, the linear or branched compound containing an oxyalkylene group at the center thereof and having at least two (meth)acryl groups at the end thereof; (iii) an electrolyte solvent; (iv) an electrolyte salt; and (v) a polymerization initiator. Also, disclosed are a gel polymer electrolyte formed by polymerizing the composition for a gel polymer electrolyte, and an electrochemical device comprising the gel polymer electrolyte.
摘要:
A non-aqueous electrolyte solution for a lithium secondary battery comprises a lithium salt and an organic solvent. The non-aqueous electrolyte solution further comprises a specific siloxane compound and a sulfonate compound. This non-aqueous electrolyte solution solves the capacity degradation phenomenon, which appears in a lithium secondary battery using a non-aqueous electrolyte solution containing only a specific siloxane compound when the lithium secondary battery is used for a long time, so this non-aqueous electrolyte solution is especially useful for high-capacity batteries.
摘要:
Disclosed are a novel thiazole-containing benzophenone derivative represented by formula 1, and an isomer thereof, a pharmaceutically acceptable salt thereof, a hydrate thereof and a solvate thereof, a pharmaceutical composition comprising the derivative, a use of the derivative as therapeutic agent and a method for preparing the derivative. The benzophenone thiazole derivatives inhibit formation of microtubules and eliminate actively proliferating cells of malignant tumors to control general cell proliferation. In formula 1, R, R1 and R2 are defined as above.
摘要:
A method of manufacturing a thin film transistor array panel is provided, The method includes: forming a gate line on a substrate; forming a gate insulating layer on the gate line; forming a semiconductor layer on the gate insulating layer; forming a data line and a drain electrode on the semiconductor layer; depositing a passivation layer on the data line and the drain electrode; forming a photoresist including a first portion and a second portion thinner than the first portion on the passivation layer; etching the passivation layer using the photoresist as a mask to expose a portion of the drain electrode at least in part; removing the second portion of the photoresist; depositing a conductive film; and removing the photoresist to form a pixel electrode on the exposed portion of the drain electrode.
摘要:
An array substrate includes a first line, a second line and a switching element in a pixel region defined by the first and second lines adjacent to each other. The pixel electrode is electrically connected to an electrode of the switching element through a plurality of contact holes through which the electrode of the switching element is partially exposed.
摘要:
A method of manufacturing a thin film transistor array panel is provided, The method includes: forming a gate line on a substrate; forming a gate insulating layer on the gate line; forming a semiconductor layer on the gate insulating layer; forming a data line and a drain electrode on the semiconductor layer; depositing a passivation layer on the data line and the drain electrode; forming a photoresist including a first portion and a second portion thinner than the first portion on the passivation layer; etching the passivation layer using the photoresist as a mask to expose a portion of the drain electrode at least in part; removing the second portion of the photoresist; depositing a conductive film; and removing the photoresist to form a pixel electrode on the exposed portion of the drain electrode.