Abstract:
Provided are infrared reflective films comprising a substrate and at least one infrared reflective layer comprising an aminium radical cation compound in a crystalline state and an organic polymer, wherein the infrared reflective layer has a reflectance peak in the infrared region from 1250 nm to 1700 nm. Such infrared films are stable in their optical properties against degradation by light and moisture. Also provided are solar control window films, security markings, and other optical articles comprising such infrared reflective films. Further provided are methods for making such infrared reflective films.
Abstract:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheets of the current invention possess excellent weather resistance, heat resistance, color retention, adhesion between layers and encapsulant, and scratch resistance. The backing sheet can minimize the deterioration in the performance of the solar module due to moisture permeation. It also can achieve desirable photoelectric conversion efficiency over a long period of time. Additionally the described backing sheet, or alternatively referred to backskin, can be made in an aesthetically pleasing form.
Abstract:
Hierarchical modulation preferably uses a 16-ary quadrature amplitude modulation (QAM) modulator with a convolutional encoder that combine to effectively provide unequal protection to two different segments of streaming input data, with improved power efficiency with the same bandwidth efficiency, by encoding the first segment as coded data as LSBs as the second segment remains uncoded as uncoded MSBs, with the MSBs used for QAM constellation modest reliability interquadrant demodulation and detection, and with the LSBs used for low reliability intraquadrant detection, but with the LSBs subject to convolutional encoding and decoding rendering the LSBs with high reliability detection, such that, the two segments have unequal coding and modulation for providing unequal levels of reliability detection.
Abstract:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes a hydrophobic silica. The amount of hydrophobic silica contained in the layer is within the range of 2.5 to 15.0% by weight, and preferably in the range of 7.5 to 12.5%. Also, the layer including fluoropolymer may further include a titanium dioxide.
Abstract:
A protective backing sheet for photovoltaic modules is provided. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes boron nitride. The amount of boron nitride contained in the layer is within the range of 2 to 30.0% by weight, and preferably in the range of 5 to 10%. Also, the layer including fluoropolymer may further include a titanium dioxide.
Abstract:
A die package and a method for manufacturing the die package are provided. The die package includes a second die arranged above a first die, the first die comprising an interconnect region on a surface facing the second die, wherein the second die is arranged laterally next to the interconnect region of the first die; a first package-internal free-standing interconnect structure disposed above the interconnect region of the first die; a second package-internal free-standing interconnect structure disposed above an interconnect region of the second die, the interconnect region of the second die being on a surface of the second die facing away from the first die; and package material formed partially around the first package-internal free-standing interconnect structure and the second package-internal free-standing interconnect structure such that a connecting portion of the first package-internal free-standing interconnect structure and a connecting portion of the second package-internal free-standing interconnect structure remains uncovered to be electrically connected to a package-external interconnect structure.
Abstract:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheets of the current invention possess excellent weather resistance, heat resistance, color retention, adhesion between layers and encapsulant, and scratch resistance. The backing sheet can minimize the deterioration in the performance of the solar module due to moisture permeation. It also can achieve desirable photoelectric conversion efficiency over a long period of time. Additionally the described backing sheet, or alternately referred to backskin, can be made in an aesthetically pleasing form.
Abstract:
A system and method for augmenting a wireless communication network to provide at least a portion of digital data to a user is disclosed. The method comprises the steps of receiving the portion of the digital data in a satellite receiver, providing the received portion of the digital data to at least one of a plurality of terrestrial receivers which form the wireless communication network, and transmitting the received portion of the digital data to a user within a service region using the terrestrial transmitter. The apparatus comprises a satellite antenna, for receiving a signal having at least a portion of the data from a satellite, and a satellite receiver, communicatively coupled to the satellite antenna for detecting and demodulating the signal to produce a portion of the digital data, the satellite receiver communicatively coupled to a terrestrial transmitter in a terrestrial wireless communication network.
Abstract:
A method and system for collecting and distributing vehicle traffic congestion information is disclosed. The method and system optionally involves deploying probe vehicles or other data sources for collecting and transmitting detailed traffic information which describes vehicle speeds actually being experienced along the routes of interest and transmitting all this information into a central computer at a central traffic data station, where the data are processed.
Abstract:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes a hydrophobic silica. The amount of hydrophobic silica contained in the layer is within the range of 2.5 to 15.0% by weight, and preferably in the range of 7.5 to 12.5%. Also, the layer including fluoropolymer may further include a titanium dioxide.