Abstract:
The present invention provides a polynucleotide (gipl) the partial sequence for which was initially isolated from a THP-1 cDNA library and which identifies and encodes a novel human phospholipase inhibitor (GIPL). The invention provides for genetically engineered expression vectors and host cells comprising the nucleic acid sequence encoding GIPL. The invention also provides for the use of purified GIPL and its agonists in pharmaceutical compositions for the treatment of diseases associated with the abnormal or excess phospholipase activity. Additionally, the invention provides for the use of antisense molecules to gipl or inhibitors of GIPL in pharmaceutical compositions for the prevention of pregnancy or treatment of Alzheimer's disease. The invention also describes diagnostic assays which utilize diagnostic compositions comprising the polynucleotide, fragments or the complement thereof, which hybridize with the genomic sequence or the transcript of gipl, or anti-GIPL antibodies which specifically bind to the polypeptide, GIPL.
Abstract:
The present invention provides a polynucleotide which identifies and encodes a human cell death-associated protein (cdap) which was isolated from a rheumatoid synovium library. The invention provides for genetically engineered expression vectors and host cells comprising a nucleic acid sequence encoding CDAP. The invention also provides for the therapeutic use of purified CDAP, cdap or its antisense molecules, or CDAP inhibitors in pharmaceutical compositions and for treatment of conditions or diseases associated with expression of CDAP. The invention also describes diagnostic assays which utilize diagnostic compositions comprising the polynucleotide, or fragments thereof, or antibodies which specifically bind to the polypeptide.
Abstract:
The present invention provides nucleotide and amino acid sequences that identify and encode a novel cellubrevin (cb). The present invention also provides for antisense molecules to the nucleotide sequences which encode cb, expression vectors for the production of purified CB, antibodies capable of binding specifically to CB, hybridization probes or oligonucleotides for the detecting the upregulation of CB encoding nucleotide sequences, genetically engineered host cells for the expression of CB, diagnostic tests for activated, inflamed or diseased cells and/or tissues based on CB-encoding nucleic acid molecules and antibodies capable of binding specifically to CB.
Abstract:
The present invention provides nucleotide and amino acid sequences that identify and encode the hyaluronan receptor (hr) from human umbilical vein endothelial cells. The present invention also provides for antisense molecules to the nucleotide sequences which encode hr, expression vectors for the production of purified HR, antibodies capable of binding specifically to HR, hybridization probes or oligonucleotides for the detecting the upregulation of HR encoding nucleotide sequences, genetically engineered host cells for the expression of HR, diagnostic tests for activated, angiogenic, inflamed or metastatic cells and/or tissues based on HR-encoding nucleic acid molecules and antibodies capable of binding specifically to the receptor.
Abstract:
The present invention provides nucleotide and amino acid sequences that identify and encode a novel expressed chemokine (ADEC) from inflamed adenoid tissue. The present invention also provides for antisense molecules to the nucleotide sequences which encode ADEC, expression vectors for the production of purified ADEC, antibodies capable of binding specifically to ADEC, hybridization probes or oligonucleotides for the detection of ADEC-encoding nucleotide sequences, genetically engineered host cells for the expression of ADEC, diagnostic tests for inflammation or disease based on ADEC-encoding nucleic acid molecules or antibodies capable of binding specifically to ADEC.
Abstract:
The invention provides a human translational regulator (TRANAC) and polynucleotides which identify and encode TRANAC. The invention also provides expression vectors, host cells, agonists, antibodies and antagonists. The invention also provides methods for treating disorders associated with expression of TRANAC.
Abstract:
The present invention provides polynucleotides which identify and encode a novel human nm23-like protein (H-nm23). The invention provides for genetically engineered expression vectors and host cells comprising the nucleic acid sequence encoding H-nm23 and for a method for producing the protein. The invention also provides for the use of substantially purified H-nm23 for the for the treatment of diseases associated with the expression of H-nm23. The invention also describes diagnostic assays which utilize diagnostic compositions comprising the polynucleotides which hybridize with naturally occurring sequences encoding H-nm23 and antibodies which specifically bind to the protein.
Abstract:
The present invention provides a polynucleotide which identifies and encodes a novel human galectin-8. The invention provides for genetically engineered expression vectors and host cells comprising the nucleic acid sequence encoding human galectin-8. The invention also provides for the production and use of substantially purified human galectin-8 in pharmaceutical compositions to increase immune responses. The invention also provides for the use of antisense molecules and antibodies in pharmaceutical compositions to decrease immune response. The invention also describes diagnostic assays which utilize the polynucleotide to hybridize with the transcripts and/or genomic DNA encoding human galectin-8 and anti-human galectin-8 antibodies which specifically bind to human galectin-8.
Abstract:
The present invention provides nucleotide and amino acid sequences that identify and encode a novel expressed chemokine (ADEC) from inflamed adenoid tissue. The present invention also provides for antisense molecules to the nucleotide sequences which encode ADEC, expression vectors for the production of purified ADEC, antibodies capable of binding specifically to ADEC, hybridization robes or oligonucleotides for the detection of ADEC-encoding nucleotide sequences, genetically engineered host cells for the expression of ADEC, diagnostic tests for inflammation or disease based on ADEC-encoding nucleic acid molecules or antibodies capable of binding specifically to ADEC.
Abstract:
The present invention provides nucleotide and amino acid sequences that identify and encode novel cellubrevins (cb). The present invention also provides for antisense molecules to the nucleotide sequences which encode cbs, expression vectors for the production of purified CBs, antibodies capable of binding specifically to CBs, hybridization probes or oligonucleotides for the detecting the induction of CB encoding nucleotide sequences, genetically engineered host cells for the expression of CBs, diagnostic tests for activated, inflamed or diseased cells and/or tissues based on CB-encoding nucleic acid molecules and antibodies capable of binding specifically to CBs.