Abstract:
Disclosed herein is a digital broadcast receiving apparatus configured to receive terrestrial digital television broadcasting and satellite digital broadcasting, including: a terrestrial digital tuner; a satellite digital tuner; a demodulating block configured to demodulate a reception signal of the terrestrial digital television broadcasting with an output supplied from the terrestrial digital tuner, and, at the same time, demodulate a reception signal of the satellite digital broadcasting with an output supplied from the satellite digital tuner; a terrestrial digital tuner control block; a satellite digital tuner control block; and a switching block configured to switch output terminals of the demodulating block in accordance with a positional arrangement of the terrestrial digital tuner and the satellite digital tuner relative to the demodulating block.
Abstract:
A process for producing a lactic acid polymer of 15,000 to 50,000 in weight-average molecular weight, the content of polymeric materials having not more than about 5,000 in weight-average molecular weight therein being not more than about 5% by weight, characterized by hydrolyzing a high molecular weight lactic acid polymer, placing the resultant solution comprising the hydrolyzed product under a condition capable of precipitating the objective lactic acid polymer, separating the precipitated lactic acid polymer and collecting them. The lactic acid polymer is useful as a matrix for sustained-release preparations. The sustained-release microcapsule preparation encapsulating a physiologically active substance can fully prevent the initial excessive release of the physiologically active substance from the microcapsules and keep a stable release rate over a long period of time.
Abstract:
The present invention is particularly applied to serial concatenated coding and serial concatenated trellis coded modulation. In second encoding 107, which is inner coding, a sequence that is not encoded or that is encoded so as to produce a finite impulse response and a sequence that is encoded so as to produce an infinite impulse response are output. In interleaving 106 before the second encoding 107, the sequences are permuted so as not to be mixed with each other.
Abstract:
Disclosed herein is a digital broadcast receiving apparatus configured to receive terrestrial digital television broadcasting and satellite digital broadcasting, including: a terrestrial digital tuner; a satellite digital tuner; a demodulating block configured to demodulate a reception signal of the terrestrial digital television broadcasting with an output supplied from the terrestrial digital tuner, and, at the same time, demodulate a reception signal of the satellite digital broadcasting with an output supplied from the satellite digital tuner; a terrestrial digital tuner control block; a satellite digital tuner control block; and a switching block configured to switch output terminals of the demodulating block in accordance with a positional arrangement of the terrestrial digital tuner and the satellite digital tuner relative to the demodulating block.
Abstract:
A process for producing a lactic acid polymer of 15,000 to 50,000 in weight-average molecular weight, the content of polymeric materials having not more than about 5,000 in weight-average molecular weight therein being not more than about 5% by weight, characterized by hydrolyzing a high molecular weight lactic acid polymer, placing the resultant solution comprising the hydrolyzed product under a condition capable of precipitating the objective lactic acid polymer, separating the precipitated lactic acid polymer and collecting them. The lactic acid polymer is useful as a matrix for sustained-release preparations. The sustained-release microcapsule preparation encapsulating a physiologically active substance can fully prevent the initial excessive release of the physiologically active substance from the microcapsules and keep a stable release rate over a long period of time.
Abstract:
Disclosed is a vaporizer constituted of a dispersing section 8 and a vaporizing section 22. The dispersing section 8 comprises a gas introduction port 4 for introducing a carrier gas 3 under pressure into a gas passage, means for feeding raw material solutions 5a and 5b to the gas passage, and a gas outlet 7 for delivering the carrier gas containing the raw material solutions to the vaporizing section 22. The vaporizing section 22 comprises a vaporizing tube 20 having one end connected to a reaction tube of the MOCVD system and having the other end connected to the gas outlet 7 of the dispersing section 8, and heating means for heating the vaporizing tube 20. The vaporizing section 22 serves to heat and vaporize the raw material solution containing carrier gas 3 delivered from the dispersing section 8. The dispersing section 8 includes a dispersing section body 1 having a cylindrical hollow portion, and a rod 10 having an outer diameter smaller than the inner diameter of the cylindrical hollow portion. The rod 10 has a spiral groove 60 formed in the external periphery closer to the vaporizing section 22, the rod 10 being inserted into the cylindrical hollow portion.
Abstract:
A first guide roll, a second guide roll and a backing roll are mounted on a movable frame. A feed roll is disposed substantially perpendicularly below the second guide roll upstream of the second guide roll relative to a direction of movement of a base sheet. The distance between the feed roll and the second guide roll is ninety (90) to two hundred and ten (210) times as long as a distance of travel of the backing roll when the backing roll is moved away from a coating roll.
Abstract:
The distance between a D-roll and a C-roll is switched at proper time intervals between two stages in which the distance is larger or smaller. A thicker coating layer on the C-roll with the thickness controlled by the larger distance between the D-roll and the C-roll is transferred onto a base sheet in a condition in which the C-roll and a B-roll are in contact with each other with the base sheet interposed therebetween. The distance between the C-roll and the B-roll is increased when a thinner coating layer on the C-roll with the thickness controlled by the smaller distance between the D-roll and the C-roll reaches a transfer position, so that the coating layer is not transferred onto the base sheet. A local increase of the amount of the coating material applied at the end of a coating area can be prevented, and the thickness of the coating material applied can be controlled to be constant with high accuracy over the entire coated area.
Abstract:
A method of manufacturing glass comprises a stirring step in which molten glass MG is stirred. The stirring step comprises a first stirring step and a second stirring step. In the first stirring step, the molten glass MG is stirred while being directed upward from below in a first stirred tank 100a. In the second stirring step, the molten glass MG stirred in the first stirring step is stirred while being directed downward from above in a second stirred tank 100b. The first stirred tank 100a has a first discharge pipe 110a capable of discharging the molten glass MG from the bottom of a first chamber 101a. The second stirred tank 100b has a second discharge pipe 110b capable of discharging the molten glass MG from the liquid level LL of the molten glass MG in a second chamber 101b.
Abstract:
A process for producing a lactic acid polymer of 15,000 to 50,000 in weight-average molecular weight, the content of polymeric materials having not more than about 5,000 in weight-average molecular weight therein being not more than about 5% by weight, characterized by hydrolyzing a high molecular weight lactic acid polymer, placing the resultant solution comprising the hydrolyzed product under a condition capable of precipitating the objective lactic acid polymer, separating the precipitated lactic acid polymer and collecting them. The lactic acid polymer is useful as a matrix for sustained-release preparations. The sustained-release microcapsule preparation encapsulating a physiologically active substance can fully prevent the initial excessive release of the physiologically active substance from the microcapsules and keep a stable release rate over a long period of time.