Abstract:
A method of fabrication and a field effect device structure are presented that reduce source/drain capacitance and allow for device body contact. A Si based material pedestal is produced, the top surface and the sidewalls of which are oriented in a way to be substantially parallel with selected crystallographic planes of the pedestal and of a supporting member. The pedestal is wet etched with an anisotropic solution containing ammonium hydroxide. The sidewalls of the pedestal become faceted forming a segment in the pedestal with a reduced cross section. The dopant concentration in the reduced cross section segment is chosen to be sufficiently high for it to provide for electrical continuity through the pedestal.
Abstract:
A method for implementing an ORC process to facilitate physical verification of an integrated circuit (IC) graphical design. The method includes partitioning the IC graphical design data into files by a host machine such that the files correspond to regions of interest or partitions with defined margins, dispersing the partitioned data files to available cpus within the network, processing of each job by the cpu receiving the file, wherein artifacts arising from bisection of partitioning margins during the partitioning, including cut-induced false errors, are detected and removed, and the shape-altering effects of such artifact errors are minimized and transmitting the results of processing at each cpu to the host machine for aggregate processing.
Abstract:
A method of forming integrated circuits having FinFET transistors includes a method of forming sub-lithographic fins, in which a mask defining a block of silicon including a pair of fins in reduced in width or pulled back by the thickness of one fin on each side, after which a second mask is formed around the first mask, so that after the first mask is removed, an aperture remains in the second mask having the width of the separation distance between the pair of fins. When the silicon is etched through the aperture, the fins are protected by the second mask, thereby defining fin thickness by the pullback step. An alternative method uses lithography of opposite polarity, first defining the central etch aperture between the two fins lithographically, then expanding the width of the aperture by a pullback step, so that filling the widened aperture with an etch-resistant plug defines the outer edges of the pair of fins, thereby setting the fin width without an alignment kstep.
Abstract:
Disclosed herein is a method, in an integrated, of forming a high-K node dielectric of a trench capacitor and a trench sidewall device dielectric at the same time. The method includes forming a trench in a single crystal layer of a semiconductor substrate, and forming an isolation collar along a portion of the trench sidewall, wherein the collar has a top below the top of the trench in the single crystal layer. Then, at the same time, a high-K dielectric is formed along the trench sidewall, the high-K dielectric extending in both an upper portion of the trench including above the isolation collar and in a lower portion of the trench below the isolation collar. The top of the isolation collar is then etched back to expose a portion of the single crystal substrate along the sidewall, and then, a node electrode is formed in conductive contact with the exposed sidewall and also in contact with the high-K dielectric in the lower portion, such that the high-K dielectric remains as a trench sidewall dielectric in the upper portion of the sidewall. In a DRAM memory cell structure, the trench sidewall dielectric may then be used as a gate dielectric of a vertical transistor which accesses the trench storage capacitor in the trench.
Abstract:
A method and structure for increasing the threshold voltage of vertical semiconductor devices. The method comprises creating a deep trench in a substrate whose semiconductor material has an orientation plane perpendicular to the surface of the substrate. Then, vertical transistors are formed around and along the depth of the deep trench. Next, two shallow trench isolation are formed such that they sandwich the deep trench in an active region and the two shallow trench isolation regions abut the active region via planes perpendicular to the orientation plane. Then, the channel regions of the vertical transistors are exposed to the atmosphere in the deep trench and then chemically etched to planes parallel to the orientation plane. Then, a gate dielectric layer is formed on the wall of the deep trench. Finally, the deep trench is filled with poly-silicon to form the gate for the vertical transistors.
Abstract:
A 3D microelectronic structure is provided which includes a substrate having at least one opening present therein, the at least one opening having sidewalls which extend to a common bottom wall; and a thermal nitride layer present on at least an upper portion of each sidewall of openings. A method for fabricating the above-mentioned 3D microelectronic structure is also provided. Specifically, the method includes a step of selectively forming a thermal nitride layer on at least an upper portion of each sidewall of an opening formed in a substrate.
Abstract:
The present invention is a method and structure for fabricating a trench capacitor within a semiconductor substrate having a buried plate electrode formed of metal silicide. A collar is formed in a trench etched into a substrate; a conformal metal film is deposited thereover, and is annealed to form a silicide that is self-aligned to the collar. Silicide will not be formed on the collar, pads and other areas where the silicon is not directly exposed and hence the metal layer can be removed from these areas by selective etching.
Abstract:
A method is presented for fabricating a non-planar field effect device. The method includes the production of a Si based material Fin structure that has a top surface substantially in parallel with a {111} crystallographic plane of the Si Fin structure, and the etching of the Si Fin structure with a solution which contains ammonium hydroxide (NH4OH). In this manner, due to differing etch rates in ammonium hydroxide of various Si based material crystallographic planes, the corners on the Fin structure become clipped, and angles between the horizontal and vertical planes of the Fin structure increase. A FinFET device with clipped, or rounded, corners is then fabricated to completion. In a typical embodiment the FinFET device is selected to be a silicon-on-insulator (SOI) device.
Abstract:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
Abstract:
A method for implementing an ORC process to facilitate physical verification of an integrated circuit (IC) graphical design. The method includes partitioning the IC graphical design data into files by a host machine such that the files correspond to regions of interest or partitions with defined margins, dispersing the partitioned data files to available cpus within the network, processing of each job by the cpu receiving the file, wherein artifacts arising from bisection of partitioning margins during the partitioning, including cut-induced false errors, are detected and removed, and the shape-altering effects of such artifact errors are minimized and transmitting the results of processing at each cpu to the host machine for aggregate processing.