Abstract:
A method for preparing graphene nanoplate (GNP) is provided and includes preparing expanded graphite (EG) and exfoliating, grinding, or cracking the expanded graphite to crack the EG induced by gas-phase-collision. A graphene nanoplate paste and a conductive coating layer formed of the graphene nanoplate paste are provided and are prepared by the method for preparing graphene nanoplate.
Abstract:
The present invention relates to a powder for growing a gallium oxide single crystal and a method of manufacturing the same, and the powder for growing a gallium oxide single crystal according to an embodiment of the present invention is made of gallium oxide and has a bulk density of 0.7 g/cm3 or more and 1.0 g/cm3 or less.
Abstract:
The present invention provides a plasma-resistant ceramic substrate including a bulk of an oxide composition; and a surface layer in which an oxide composition component constituting the bulk was modified to a composition including one or more anions selected from the group consisting of F− and Cl−, wherein the surface layer is a layer in which a raw material containing one or more anions selected from the group consisting of F− and Cl− is vaporized by heating and adsorbed on the surface of the ceramic substrate to be modified to a composition including one or more anions selected from the group consisting of F− and Cl−, and a method of manufacturing the same. According to the present invention, the plasma resistance and durability of the ceramic substrate can be improved at low cost.
Abstract:
A device for producing nanoparticles includes: a first connector comprising a first supply tube fitting member, a second supply tube fitting member, and a first discharge tube fitting member; a first tube having one side connected to the first supply tube fitting member; a second tube having one side connected to the second supply tube fitting member; a first conduit having one side connected to the first discharge tube fitting member; a first supply connected to another side of the first tube to supply a first material to the first conduit; and a second supply connected to another side of the second tube to supply a second material to the first conduit.
Abstract:
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor.
Abstract:
Provided is a complex patterning device. The complex patterning device includes a patterning module, on which a master substrate including a master pattern that contacts and is separated from a target substrate and which forms a plurality of target patterns having a reverse image of the master pattern on the target substrate by applying a pressure onto the target substrate, and a punching module including a punching mold that contacts and is separated from the target substrate, in which the plurality of target patterns are formed, and which divides at least any one of the plurality of target patterns by applying a pressure onto the target substrate.
Abstract:
Disclosed is a stack module for a fuel cell and high temperature electrolysis including an individually changeable cell battery module during operation, the stack module being designed to be able to individually separate, couple, or replace a plurality of cell battery modules by a one-touch manner during operation so that maintenance costs are low, and, even when one or more cell battery modules are separated from a fuel transfer panel, other cell battery modules can operate normally such that superior power generation efficiency can be achieved.
Abstract:
The present invention relates to a 3D printer printhead, a 3D printer using the same, a method for manufacturing a molded product by using the 3D printer, a method for manufacturing an artificial tooth by using the 3D printer, and a method for manufacturing a machinable glass ceramic molded product by using the 3D printer, the 3D printer printhead comprising: an inlet through which glass wire, which is a raw material, is introduced; a heating means for heating the glass wire introduced through the inlet; a melting furnace for providing a space in which the glass wire is fused; and a nozzle connected to the lower part of the melting furnace so as to temporarily store the fused glass or discharge a targeted amount of the fused glass, wherein the melting furnace includes an exterior frame made from a heat resistant material and an interior frame having a crucible shape, and the interior frame is made from platinum (Pt), a Pt alloy or graphite, which have a low contact angle, or a material having a surface coated with Pt or a diamond-like carbon (DLC) so as to prevent the fused glass from sticking thereto. According to the present invention, the molded product, the artificial tooth, and the machinable glass ceramic molded product can be manufactured with excellent mechanical properties, thermal durability, chemical durability and oxidation resistance and outstanding texture by using the glass wire as a raw material.
Abstract:
Provided is a method of manufacturing an anode core-shell complex for a solid oxide fuel cell, including (A) manufacturing a stabilized zirconia (YSZ) sol by using zirconium hydroxide (Zr(OH)4) and yttrium nitrate (Y(NO3)3.6H2O) as a starting material and distilled water as a solvent by a hydrothermal method, (B) agitating nickel chloride, stabilized zirconia in a sol state, and a surfactant, (C) adding sodium hydroxide (NaOH), (D) adjusting a pH to a range of 6 to 8, and (E) sintering the nickel-stabilized zirconia core-shell powder.
Abstract:
A graphene oxide-ceramic hybrid coating layer formed from a graphene oxide-ceramic hybrid sol solution that includes graphene oxide (GO) and a ceramic sol and a method of preparing the coating layer are provided. A content of graphene oxide in the graphene oxide-ceramic hybrid coating layer is about 0.002 to about 3.0 wt % based on the total weight of the graphene oxide-ceramic hybrid coating layer.