Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as underfloor (UF) three-way catalyst (TWC) systems with varied material compositions and configurations are disclosed. SPGM UF catalysts in which ZPGM compositions of binary and ternary spinel structures supported onto support oxides are coupled with commercialized PGM close-coupled (CC) catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including commercialized PGM CC and SPGM UF (with ultra-low PGM loadings) catalysts is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM UF TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.
Abstract:
Disclosed here are systems and methods including one or more FBCs and one or more suitable aftertreatment devices, including DOCs, DPFs, and suitable combinations thereof. The systems and methods disclosed may include selecting a suitable FBC for use with a fuel with a specified sulfur content. Systems and methods disclosed here may also include using one or more ECUs to control one or more FBC dosing/metering devices to supply FBCs from one or more FBC reservoirs in the presence of a specified event.
Abstract:
Synergized PGM catalyst converters configured as three-way catalyst (TWC) systems are disclosed. The disclosed SPGM system configurations exhibit high thermal stability, attenuated air to fuel (A/F) perturbations, enhanced TWC activity, and high catalytic conversion efficiency as a result of synergizing a low PGM loading close-coupled catalyst (CCC), with Ce-based oxygen storage, with a front spinel zone of suitable mixed metal oxide compositions acting as pre-catalyst for oxygen storage. The attenuation of A/F perturbations to lower amplitude, before exhaust gas emissions go into the standard PGM CCC, allows the system to work within a range of R values very close to the stoichiometric point for both lean and rich conditions, and high catalytic conversion efficiency in NOX, CO, and HC conversions. The disclosed SPGM system configurations can be utilized in a plurality of TWC applications, such as conventional TWC systems including an optional underfloor catalyst.
Abstract:
Close-coupled catalysts (CCC) for TWC applications are disclosed. The novel CCCs are implemented using light-weighted ceramic substrates in which a thin coating employing a low loading of Iron (Fe)-activated Rhodium (Rh) material composition, with Iron loadings and an OSM of Ceria-Zirconia, are deposited onto the substrates. Different CCC samples are produced to determine and/or verify improved light-off (LO) and NOX conversion of the CCCs. Other CCC samples produced are a CCC including a standard (non-activated) Rh thin coating and a heavily loaded CCC with a single coating of Pd/Rh material composition. The CCC samples are aged under dyno-aging using the multi-mode aging cycle and their performance tested using a car engine with ports on the exhaust to measure the emissions, according to the testing protocol in the Environmental Protection Agency Federal Test Procedure 75. During testing, the thin coatings of Fe-activated Rh exhibit improved light-off and NOx conversion efficiency.
Abstract:
Synergies resulting from combinations of catalyst systems including Copper-Manganese material compositions and PGM catalysts are disclosed. Variations of catalyst system configurations are tested to determine most effective material composition, formulation, and configuration for an optimal synergized PGM (SPGM) catalyst system. The synergistic effect of the selected SPGM catalyst system is determined under steady state and oscillating test conditions, from which the optimal NO/CO cross over R-value indicates enhanced catalytic behavior of the selected SPGM catalyst system as compared with current PGM catalysts for TWC applications. According to principles in the present disclosure, application of Pd on alumina-based support as overcoat and Cu—Mn spinel structure supported on Nb2O5—ZrO2 as washcoat on suitable ceramic substrate, produce higher catalytic activity, efficiency, and better performance in TWC condition, especially under lean condition, than commercial PGM catalysts.
Abstract:
Three way catalysts (TWCs) for catalyst systems are disclosed. The disclosed TWC systems include Iron (Fe)-activated Rhodium (Rh) and Barium (Ba)-Palladium (Pd) layers capable of interacting with conventional and/or non-conventional catalyst supports and additives. Variations of TWC system samples are produced including Fe-activated Rh layers deposited onto a washcoat (WC) layer having one or more of an oxygen storage material (OSM). Other TWC system samples are produced including an impregnation (IMPG) layer having loading variations of Ba within a Pd, Ce, and Nd applied onto an OSM WC layer, and a further overcoat layer including Fe-activated Rh is applied onto the IMPG layer. The catalytic performance of disclosed TWC catalysts is evaluated by performing a series of light-off tests, wide pulse perturbation tests, and standard isothermal oxygen storage capacity oscillating tests. Disclosed TWC catalysts exhibit high catalytic performance and significant oxygen storage capacity.
Abstract:
Synergized PGM catalyst converters configured as three-way catalyst (TWC) systems are disclosed. The disclosed SPGM system configurations exhibit high thermal stability, attenuated air to fuel (A/F) perturbations, enhanced TWC activity, and high catalytic conversion efficiency as a result of synergizing a low PGM loading close-coupled catalyst (CCC), with Ce-based oxygen storage, with a front spinel zone of suitable mixed metal oxide compositions acting as pre-catalyst for oxygen storage. The attenuation of A/F perturbations to lower amplitude, before exhaust gas emissions go into the standard PGM CCC, allows the system to work within a range of R values very close to the stoichiometric point for both lean and rich conditions, and high catalytic conversion efficiency in NOX, CO, and HC conversions. The disclosed SPGM system configurations can be utilized in a plurality of TWC applications, such as conventional TWC systems including an optional underfloor catalyst.
Abstract:
Spinels having a general formula of AB2O4, where A and B are a transition metal but not the same transition metal are disclosed. Spinel and spinel compositions of the application are useful in various applications and methods as further described.
Abstract translation:公开了具有通式AB 2 O 4的尖晶石,其中A和B是过渡金属,但不是相同的过渡金属。 应用的尖晶石和尖晶石组合物可用于进一步描述的各种应用和方法中。
Abstract:
Coated gasoline particulate filters (cGPFs) that are produced according to varied material compositions and catalyst configurations are disclosed. The cGPFs include Fe—Ce (rich)-activated Rh compositions that provide greater catalytic functionality. These cGPFs are incorporated within engine systems as components of TWC systems for controlling and reducing engine exhaust emissions. The conversion performance of these TWC systems is assessed and compared employing worldwide harmonized light duty test cycle (WLTC) protocol within a gasoline fueled internal combustion engine. These TWC systems exhibit a significant catalytic performance when compared with the catalytic performance of a PGM-based Original Equipment Manufacturer (OEM) catalyst employed in TWC applications. Further, TWC catalysts are produced including Fe-activated Rh layers comprising dopant elements. The catalytic performance of the TWC catalysts is evaluated by performing light-off and standard isothermal oxygen storage capacity oscillating tests. The TWC catalysts exhibit improved catalytic performance and significant oxygen storage capacity.
Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as close-coupled (CC) three-way catalysts (TWC) systems with varied material compositions and configurations are disclosed. SPGM CC catalysts in which ZPGM compositions of binary or ternary spinel structures supported onto support oxides are coupled with commercialized PGM UF catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including SPGM CC (with ultra-low PGM loadings) catalyst and commercialized PGM UF catalyst is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM CC TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.