Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as underfloor (UF) three-way catalyst (TWC) systems with varied material compositions and configurations are disclosed. SPGM UF catalysts in which ZPGM compositions of binary and ternary spinel structures supported onto support oxides are coupled with commercialized PGM close-coupled (CC) catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including commercialized PGM CC and SPGM UF (with ultra-low PGM loadings) catalysts is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM UF TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.
Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as close-coupled (CC) three-way catalysts (TWC) systems with varied material compositions and configurations are disclosed. SPGM CC catalysts in which ZPGM compositions of binary or ternary spinel structures supported onto support oxides are coupled with commercialized PGM UF catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including SPGM CC (with ultra-low PGM loadings) catalyst and commercialized PGM UF catalyst is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM CC TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.
Abstract:
Modified calibration strategies for controlling an internal combustion engine and monitoring catalyst performance are disclosed. The modified calibration strategies are implemented using an engine and test cell/catalyst chamber setup wherein the engine is a Euro V 1.2 L turbo gasoline direct injection engine and test cells/catalyst chamber are implemented as substantially free of platinum group metals (PGM) catalysts, herein referred as ZPGM catalysts, and synergized PGM (SPGM) catalysts including a stoichiometric spinel structure within the catalyst configuration. The utilization of an open ECU enables the modified calibration of the engine out targeted AFR. The conventional ECU AFR control strategies are not modified to have the ECU AFR control strategies to continue running normally and only the final engine out targeted AFR values are modified by applying offset AFR values. The modified calibration strategies improve engine operation and catalyst conversion efficiency of the ZPGM and SPGM catalysts including the spinel structures.
Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as close-coupled (CC) three-way catalysts (TWC) systems with varied material compositions and configurations are disclosed. SPGM CC catalysts in which ZPGM compositions of binary or ternary spinel structures supported onto support oxides are coupled with commercialized PGM UF catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including SPGM CC (with ultra-low PGM loadings) catalyst and commercialized PGM UF catalyst is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM CC TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.
Abstract:
Modified calibration strategies for controlling an internal combustion engine and monitoring catalyst performance are disclosed. The modified calibration strategies are implemented using an engine and test cell/catalyst chamber setup wherein the engine is a Euro V 1.2 L turbo gasoline direct injection engine and test cells/catalyst chamber are implemented as substantially free of platinum group metals (PGM) catalysts, herein referred as ZPGM catalysts, and synergized PGM (SPGM) catalysts including a stoichiometric spinel structure within the catalyst configuration. The utilization of an open ECU enables the modified calibration of the engine out targeted AFR. The conventional ECU AFR control strategies are not modified to have the ECU AFR control strategies to continue running normally and only the final engine out targeted AFR values are modified by applying offset AFR values. The modified calibration strategies improve engine operation and catalyst conversion efficiency of the ZPGM and SPGM catalysts including the spinel structures.
Abstract:
Synergized platinum group metals (SPGM) with ultra-low PGM loadings employed as underfloor (UF) three-way catalyst (TWC) systems with varied material compositions and configurations are disclosed. SPGM UF catalysts in which ZPGM compositions of binary and ternary spinel structures supported onto support oxides are coupled with commercialized PGM close-coupled (CC) catalysts and tested under Federal Test Procedure FTP-75 within TGDI and PI engines. The performance of the TWC systems including commercialized PGM CC and SPGM UF (with ultra-low PGM loadings) catalysts is compared to the performance of commercialized PGM CC and PGM UF catalysts. The disclosed TWC systems indicate that SPGM UF TWC catalytic performance is comparable or even exceeds high PGM-based conventional TWC catalysts, with reduced tailpipe emissions.