Abstract:
A system for determining a clinically relevant temperature differential between a predetermined area of interest on the body surface of a mammal and a control area on the body surface of said mammal, said system comprising: a visual and thermal image capturing device, said image capturing device comprising: a housing, a means for capturing a digital visual image within said housing; and a means for capturing a digital thermal image within said housing; a display apparatus, said display apparatus comprising means for showing said captured visual image and said captured thermal image; and a computing apparatus, said computing apparatus operatively connected to said image capturing device and to said display apparatus, said computing apparatus comprising: a means for selecting a control area on the surface of the skin; a means for determining an temperature of said control area; a means for selecting an area of clinical interest within said visual image; a means for calculating plane geometric features of said selected area of clinical interest; a means for overlaying said digital image onto said thermal image in a desired orientation on said display apparatus; and a means for applying a unique pixel value to a specific predetermined temperature range on said thermal image.
Abstract:
A smartphone that includes a microprocessor, a battery operably coupled to the microprocessor, a single button operably coupled to the microprocessor, a communication subsystem that receives messages from and sends messages to wireless networks in accordance with Code Division Multiple Access (CDMA), a digital infrared sensor operably coupled to the microprocessor, the digital infrared sensor having ports that provide a digital signal representing a temperature, and a display device operably coupled to the microprocessor, wherein the microprocessor receives from the ports the digital signal that is representative of the temperature and the microprocessor generates a body core temperature from the digital signal that is representative of the temperature and the microprocessor also operably coupled to the display device displays the body core temperature.
Abstract:
A low-radiance infrared airborne calibration reference is an infrared imaging and calibration method. The method includes positioning a mirror perpendicular to an optical axis of a focal plane array in both an open-face position and a mirror-reading position. Temperatures of a lens, window, and the mirror are determined. In-band radiance and offset is calculated to generate an adjusted calibration curve.
Abstract:
A system kit and a method for creating a thermal imaging camera by connecting an infrared radiation capturing device to an external platform are provided herein. The kit may include a front end module which may include an image capturing device comprising a micro bolometer detector; and a universal serial bus (USB) interface connected to the image capturing device. The kit may further include a backend module, comprising data sets which are specific to said micro bolometer detector and computer readable code which is executable by a computer processor located at a physical location other than the front end module, wherein said front end module is configured to obtain raw data from the micro bolometer detector and deliver it over the USB interface to said backend module, wherein said backend module code turns the raw data into thermal imagery and temperature readings.
Abstract:
A system and a method for quantifying the amount and toxicity of a point source gaseous discharge without contacting or physically sampling the point source gaseous discharge, includes: a digital camera capable of capturing multiple images of the point source gaseous discharge and an advanced thermographic camera capable of capturing multiple infrared images of the point source gaseous discharge; and processing circuitry configured to: delineate a smoke region around a point source discharge according to a temperature profile around the point source determined from the normal and infrared images of the space around the point source; digitally record a temperature profile of the smoke region; fuse the aggregated information from the separate images captured using the normal thermographic cameras in order to obtain the emissivity and radiation intensity of one or more components of the point source gaseous discharge in the smoke region from a static database; determine the identity of the components of the point source gaseous discharged by comparing temperature variations of the temperature profile of the smoke region with the emissivity and radiation intensity from the static database; and determine the amount of the components of the point source gaseous discharge through a fuzzy logic controller by relating the properties of the components with the temperature profile the emissivity of the components in the static database.
Abstract:
Provided is an antenna module that comprises an antenna comprising a radiation patch for transmitting or receiving the terahertz wave, and a first ground disposed away from the radiation patch, the first ground having a hole, an integrated circuit board having a signal processing unit configured to generate the terahertz wave or to process the terahertz wave received through the antenna, the integrated circuit board being disposed under the antenna and a via configured to connect the radiation patch with the signal processing unit, the via passing through the hole.
Abstract:
A method of determining temperature shifting error derived from radiation sensor comprising: providing an infrared heat sensor and a temperature sensor contacting with a black body, the temperature sensor measuring an actual black body temperature, the infrared heat sensor detecting a radiation emitted by the black body, the radiation being computed according to a temperature rising curve through a computing unit of a work station to generate a computed black body temperature; and determining a value of temperature shifting error by subtracting the actual black body temperature from the computed black body temperature. Accordingly, method of measuring ocular surface temperature and apparatus thereof based on the above shift error determining method are also provided.
Abstract:
A network for indicating and communicating detection of hostile fire, and systems, methods, and computer program products thereof. Hostile fire is optically detected and identified at a first vehicle and such identification is transmitted from the first vehicle to one or more other vehicles in the network. Data regarding hostile fire directed at the first vehicle can be stored at one or more of the other vehicles and even retransmitted to other vehicles or base stations.
Abstract:
An IR sensor system, an IR sensor module, a temperature detection module and a corresponding calibration method are provided. The IR sensor system has an IR sensor module including a pixelated IR detection area, which has a first control unit for controlling an IR measuring operation and a calibration operation, and a storage unit connected to it, and including a temperature detection module which is detectable in a pixel subarea of the IR detection area, the temperature detection module having a temperature sensor device and a second control unit connected to it. The geometric position of the pixel subarea on the IR detection area is storable in the storage unit.
Abstract:
An infrared (IR) imaging system is presented. The system includes a cooling chamber associated with a cooler generating a certain temperature condition inside the chamber. The cooling chamber has an optical window, and includes thereinside an IR detection unit including one or more detectors thermally coupled to the cooler and at least two cold shields thermally coupled to the cooler and carrying at least two imaging optical assemblies. The at least two imaging optical assemblies are enclosed by the cold shields in between the detection unit and the optical window and thereby define at least two different optical channels for imaging light from the optical window onto the one or more detectors of the detection unit.