Abstract:
Ion implantation systems are provided, comprising a dispersion system located between an ion source and a mass analyzer, that operates to selectively pass an extracted ion beam from the ion source toward the mass analyzer or to direct a dispersed ion beam toward the mass analyzer, where the dispersed ion beam has fewer ions of an undesired mass range than the extracted ion beam.
Abstract:
A hollow exciting current pathway in the form of a conductor is arranged outside of an ion deflection casing with a curved contour and having an inlet and an outlet. The conductor is composed of a widthwise spiral formation of conductors running through the inlet and outlet and along the curved contour with a result that a magnetic field which is uniform widthwise is formed in the ion deflection casing. An ion beam is introduced through between the conductors at the inlet into the hollow exciting current pathway. By the action of the magnetic field through the hollow exciting current pathway, the ion beam is bent depending upon mass of ions. The ion beam with desired mass is taken out through between the conductors at the outlet with a result that an ion beam greater in size can be ion mass separated uniformly.
Abstract:
Ion implantation systems and beamlines therefor are disclosed, in which a ribbon beam of a relatively large aspect ratio is mass analyzed and collimated to provide a mass analyzed ribbon beam for use in implanting one or more workpieces. The beamline system comprises two similar magnets, where the first magnet mass analyzes the ribbon beam to provide an intermediate mass analyzed ion beam, and the second magnet collimates the intermediate beam to provide a uniform mass analyzed ribbon beam to an end station. The symmetrical system provides equidistant beam trajectories for ions across the elongated beam width so as to mitigate non-linearities in the beam transport through the system, such that the resultant mass analyzed beam is highly uniform.
Abstract:
There are provided an element distribution observing method and an element distribution observing apparatus under utilization of core-loss electrons capable of restricting artifact caused by either a thickness or density of a specimen, or an occurrence of the artifact caused by a diffraction contrast. Electron beam intensities in a total three different energy-loss areas of two energy-loss areas not containing any core-loss electrons and one energy-loss area are calculated to attain an element distribution on the basis of the corresponding three energy-loss areas and an electron beam intensity.
Abstract:
A mass-analysed ion beam generator in which the ion beam is in the form of a thin flat ribbon with its major transverse dimension aligned parallel with the direction of the mass-analysing magnetic field.
Abstract:
A decel lens assembly (9) located between the mass selection flight tube and the substrate holder comprises a first electrode (65) at the substrate potential, a second electrode (60) at the flight tube potential and a field electrode (61) between the two at a negative potential to provide focusing. The axial spacing in the beam direction between the first and second electrodes is less than the smallest transverse dimension of the field electrode. The decel lens assembly (9) is mounted directly opposite the outlet from the process chamber to the vacuum pump to maximize evacuation efficiency. An additional screening electrode (56) is provided between the second electrode of the decel lens assembly and the exit aperture of the mass selector. A perforated screening cylinder (54) is mounted on the light tube with the second electrode of the lens assembly mounted at the down beam end of the cylinder. A first electrode has a cylindrical screening flange extending around the field electrode. A further screening electrode is located at the entrance to the electron confinement tube of the PFS system.
Abstract:
An ion implanter and an ion implanting method compatible for both positive and negative ions. The ion implanter has an ion extractor and a mass analyzer for deflecting ions, having one of a positive or negative charged state, in a predetermined direction regardless of the charged state of the ions. A polarity converter changes the flux direction of a magnetic field in the mass analyzer according to the charged state of the ions. Thus, shallow and deep impurity layers can be formed into wafers without changing ion implanters, such that BF.sup.+ as well as B.sup.+ or P.sup.+ can be implanted with a single ion implanter. As a result, the product yield of a semiconductor device can be improved.
Abstract:
An energy filtering system of an EFTEM is automatically adjusted using a computer. The computer inserts an energy-selecting slit into the beam path and begins monitoring the position of the electron beam through a combination of the current sensors integral to the slit and the readout of an electron camera. The beam is centered within the slit by adjusting an energy dispersing element while monitoring beam sensors. After initial alignment, the slit is retracted and a reference aperture is inserted at the entrance to the energy filter. The electron camera captures an image of the reference aperture and the computer analyzes the deviations of the aperture image from its known physical dimensions in order to evaluate the electron optical distortions and aberrations of the filter. The computer uses the determined optical parameters to adjust the distortion and aberration correcting optical elements of the filter, whose effects are known due to previous calibration. After correcting the imaging aberrations, the reference aperture is withdrawn, the slit reinserted, and an isochromatic surface of the filter at the plane of the slit is measured by scanning the beam across a slit edge while integrating the transmitted beam intensity on the electron camera. The isochromatic surface thus collected by the electron camera is analyzed by the computer to extract additional aberration coefficients of the filter system. These measured aberration coefficients are used to make calibrated corrections to the filter optics.
Abstract:
A low energy ion implanter having an ion source for emitting ions and an implantation chamber spaced from the ion source by an ion beam path through which ions move from the source to the implantation chamber. A mass analyzing magnet positioned along the beam path between the source and the implantation chamber deflects ions through controlled arcuate paths to filter ions from the beam while allowing certain other ions to enter the ion implantation chamber. The magnet includes multiple magnet pole pieces constructed from a ferromagnetic material and having inwardly facing pole surfaces that bound at least a portion of a ion deflection region. One or more current carrying coils set up dipole magnetic fields in the deflection region near the pole pieces. Additional coils help set up a quadrapole field in deflection region. A controller electrically coupled to the one or more coils of said magnet for controls current through the one or more current carrying coils to create the magnetic field in the deflection region near the pole pieces.
Abstract:
A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.