Abstract:
Provided are compounds having the Formula I or salts thereof, wherein R2, L, R3, R11, D2 and R13 are as defined herein, that are useful in the treatment and/or prevention of diseases mediated by deficient levels of glucokinase activity, such as diabetes mellitus. Also provided are methods of treating or preventing diseases and disorders characterized by underactivity of glucokinase or which can be treated by activating glucokinase.
Abstract:
Compounds of Formula I are useful for inhibition of CHK1 and/or CHK2. Methods of using compounds of Formula I and stereoisomers and pharmaceutically acceptable salts thereof, for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions are disclosed.
Abstract:
Compounds of Formula I are useful for inhibition of Raf kinases. Methods of using compounds of Formula I and stereoisomers, tautomers, prodrugs and pharmaceutically acceptable salts thereof, for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions are disclosed.
Abstract:
Compounds of Formula I are useful for inhibiting AKT protein kinases. Methods using compounds of Formula I and stereoisomers and pharmaceutically acceptable salts thereof, for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions are disclosed. Formula (I).
Abstract:
The present invention provides compounds, including resolved enantiomers, diastereomers, solvates and pharmaceutically acceptable salts thereof, comprising the Formula (I): Also provided are methods of using the compounds of this invention as AKT protein kinase inhibitors and for the treatment of hyperproliferative diseases such as cancer.
Abstract:
The disclosure describes method of synthesis of substituted benzazepine derivatives. Preferred methods according to the disclosure allow for large-scale preparation of benzazepine compounds having low levels of metal impurities. In some embodiments, preferred methods according to the disclosure also allow for the preparation of benzazepine derivatives without the use of chromatographic purification methods and in better yield than previously used methods for preparing such compounds. The methods disclosed herein find utility in synthetic organic chemistry as well as medicinal chemistry.
Abstract:
Provided are compositions and methods useful for modulation of signaling through the Toll-like receptors TLR7 and/or TLR8. The compositions and methods have use in the treatment of autoimmunity, inflammation allergy, asthma, graft rejection, graft versus host disease, infection, sepsis, cancer and immunodeficiency.
Abstract:
Provided are compositions and methods useful for modulation of signaling through the Toll-like receptors TLR7 and/or TLR8. The compositions and methods have use in the treatment of autoimmunity, inflammation allergy, asthma, graft rejection, graft versus host disease, infection, sepsis, cancer and immunodeficiency.
Abstract:
Compounds of Formula (I) are useful for inhibition of CHK1 and/or CHK2. Methods of using compounds of Formula (I) and stereoisomers and pharmaceutically acceptable salts thereof, for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions are disclosed.
Abstract:
Compounds of Formula I: (I) in which A, A1, R1, R7a, R7b, R8 and R10 have the meanings given in the specification, are DP2 receptor inhibitors useful in the treatment of useful in the treatment and prevention of immunologic diseases, allergic diseases such as asthma, allergic rhinitis and atopic dermatitis, and other inflammatory diseases mediated by prostaglandin D2 (PGD2). The compounds of Formula I may also be useful in treating diseases or medical conditions involving the Th2 T cell via production of IL-4, IL-5 and/or IL-13.