Abstract:
The present invention relates to a method of transmitting and receiving data in soft handoff of a wireless communication system. According to an aspect of the present invention, in the method of receiving data in soft handoff of a wireless communication system, a mobile station receives a first sequence being generated by interleaving transmission data using a first inter leaver pattern, and also receives a second sequence being generated by interleaving the transmission data using a second interleaver pattern. Then, the mobile station combines and decodes the first sequence and the second sequence before receiving an entire frame having the first sequence allocated thereto.
Abstract:
A method of transmitting signals including determining, per each of the component carriers, transmission power of at least one channel for simultaneous transmission, in such a way that a total transmission power of the at least one channel does not exceed a maximum transmission power configured for a corresponding component carrier; and checking whether a total transmission power of channels over the multiple component carriers for the simultaneous transmission exceeds a total maximum transmission power configured for the communication apparatus or not. If the total transmission power of the channels exceeds the total maximum transmission power configured for the communication apparatus, transmission power of at least one PUSCH among the channels is adjusted in such a way that an adjusted total transmission power over the multiple component carriers does not exceed the total maximum transmission power.
Abstract:
A method and device for a transmitting and receiving a signal from a relay station in a radio communication system is provided. The method includes: receiving offset time information from a base station; configuring a time difference between an access downlink transmission subframe that transmits an access downlink signal to a relay station terminal according to the offset time information and a backhaul downlink reception subframe that receives a backhaul downlink signal from the base station; transmitting a control signal from the access downlink transmission subframe to the relay station terminal; and receiving the backhaul downlink signal from the base station in the backhaul downlink reception subframe.
Abstract:
A reference signal transmission method in a downlink MIMO system is disclosed. The downlink MIMO system supports a first UE supporting N transmission antennas among a total of M transmission antennas (where M>N) and a second UE supporting the M transmission antennas. The method includes transmitting, by a base station (BS), subframe-associated information which designates a first subframe in which data for the first UE and the second UE is transmitted and a second subframe in which data only for the second UE can be transmitted within a radio frame having a plurality of subframes, and transmitting the first subframe and the second subframe. Reference signals corresponding to antenna ports ‘0’ to ‘N−1’ of the N antennas are mapped to the first subframe, and reference signals corresponding to antenna ports ‘0’ to ‘M−1’ of the M antennas are mapped to the second subframe.
Abstract:
A method is provided for transmitting channel quality information (CQI) in a MIMO system. A method for allowing a receiver to feed back a CQI value to a transmitter in a Multiple Input Multiple Output (MIMO) system includes receiving a transmission (Tx) pilot signal for each Tx antenna from a base station (BS), measuring a first CQI value of a first codeword and a second CQI value of a second codeword on the basis of the pilot signal, and transmitting the first CQI value of the first codeword and the second CQI value of the second codeword to the base station (BS), wherein at least one of the first and second CQI values includes specific information capable of indicating a transmission restriction status of a corresponding codeword.
Abstract:
A method of receiving downlink signals by a user equipment in a wireless mobile communication system, includes receiving downlink control information including resource block allocation information, wherein the downlink control information is common information for plural users; detecting a resource indication value (RIV) from the resource block allocation information, wherein the RIV indicates a start index (S) of consecutive virtual resource blocks (VRBs) and a length (L) of the consecutive VRBs; and receiving the downlink signals on the consecutive virtual VRBs.
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to; receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract translation:根据一个实施例,用于移动通信系统的用户设备被配置为: 经由控制信道接收包括第一场和第二场的控制信息,所述第一场指示N(N≥2)个资源块组(RBG)集合中的一个,所述第二场包括位图,其中位图的每个位为 用于指示是否分配了指示的一个N个RBG组中的对应资源块(RB) 解释控制信息中的资源分配的第一场和第二场; 并使用控制信息接收数据。 RBG集合n(0≦̸ n
Abstract:
The present invention relates to receiving control information in an orthogonal frequency division multiplexing (OFDM) system of a mobile communication system. The present invention includes receiving information related to a number of OFDM symbols in a subframe for receiving first control information, receiving information related to a number of OFDM symbols in the subframe for receiving second control information, decoding the first control information according to the received information related to the number of OFDM symbols in the subframe for receiving the first control information, and decoding the second control information according to the received information related to the number of OFDM symbols in the subframe for receiving the second control information, wherein the number of OFDM symbols for receiving the first control information is less than or equal to the number of OFDM symbols for receiving the second control information.
Abstract:
A method of transmitting signals by a transmitting end in a wireless communication system comprises sharing control information related to reference signal with a receiving end; generating one or more precoded reference signals considering a given rank; allocating the one or more precoded reference signals to have a specific pattern within a subframe, wherein the specific pattern is varied depending on the control information; and transmitting the subframe through multiple antennas to the receiving end.