Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A hand-held portable modular spectrometer unit. The unit includes a detachable head containing a light source and optical components for detecting spectral information from light reflected from or transmitted through a target and a processor for converting the detected spectral information into digital information. The unit also includes a plug-in rechargeable power supply and a control module for controlling the components in the measurement head. The controller includes a computer processor for analyzing the digital information produced by the measurement head and a display monitor for displaying spectral information produced by the control unit. In preferred embodiments the plug-in rechargeable power supply is a 12-volt off-the-shelf power-tool rechargeable battery unit. In preferred embodiments several measuring heads are available. These include a gas cell measuring head, a surface reflectance measuring head that includes and integrating sphere, a specular reflectance measuring head, a grazing angle measuring head, an attenuated total reflectance measuring head, a diffuse reflection measuring head, a non-volatile residues measuring head, a liquid transmission cell measuring head and a fluorescence measuring head. Each of these measurement heads includes a spectrometer. Several types of spectrometers are available including those based on filters, prisms, gratings and interferometers. The unit can operate in a wide range of wavelengths including the infrared, visible and ultraviolet spectral ranges.
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element and a first liquid crystal cell. The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.
Abstract:
A device for the simultaneous detection of radiation of different wavelength, comprising a number of base modules arranged one on top of the other, an optical module and an electronic module. One device each for reflecting and/or deflecting radiation of a determined wavelength range is provided in the base modules. The light-detecting elements are associated with one of the devices each. The invention also relates to a base module, a charging unit, a method for adjusting the device and to the use of the device.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe With respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A robust spectrophotometer (also known as a color spectrometer or colorimeter) is self contained in a housing which is adapted to be held-held and has all of the electrical, optical and electro optic elements mounted on a board captured within the housing at one end of which light from a sample is restricted to an object area and projected after being dispersed spectrally, as with a reflection grating, to an image area at a photodetector via a lens which has an optical axis and converges the dispersed light at the image area. The dispersive element is mounted on an arm having a pivot laterally offset from the dispersive element's surface where a diverging beam of light from the object area is incident and is deflected to the image area. The geometry is such that the dispersive element may be rotated to a position where the beam is specularly deflected (zeroth order diffraction), and the spectrometer calibrated when the dispersive element is in the specular reflection/deflection position. The path from the object area is approximately perpendicular to the optical axis, and then is folded by mirrors to direct the beam to incidence on the dispersive element, from which the beam is deflected and focused by the lens, the focal length of which is such that the image and object areas are in conjugate relationship. A pivotal foot on the housing having an aperture may be used to facilitate alignment of the sample with the entrance opening to the housing of the spectrophotometer.
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.
Abstract:
A handheld portable spectrophotometer is provided including keys for input of instructions by a user, an illuminator for illuminating a sample, and a spectral analyzer for separating light reflected from the sample into spectral components to produce a signal corresponding to the level of each spectral component. A processor is provided for executing the user instructions and for analyzing the signal. The results of the signal analysis are presented on a display. A power source is provided for providing power for operation of the handheld portable spectrophotometer.