Abstract:
A housing for an electronic device is disclosed. The housing comprises a first component and a second component separated from the first component by a gap. The housing also includes a first molded element disposed at least partially within the gap and defining at least a portion of an interlock feature, and a second molded element disposed at least partially within the gap and mechanically engaging the interlock feature. The first component, the second component, and the second molded element form a portion of an exterior surface of the housing. A method of forming the housing is also disclosed.
Abstract:
A watch band can provide both a physical connection and an electrical connection with a watch body of a watch. The watch band is fixed relative to the watch body and an electrical connection is either performed either simultaneously or shortly thereafter. The electrical connection enables data and power transfer between the watch body and the watch band. The electrical connection can also be performed by a secondary user interaction. Secondary user inactions can involve the user sliding, pulling, pushing, or rotating a portion of the watch band or watch body.
Abstract:
A first connector assembly may be connectable to a second connector assembly using a sliding attachment process, in which a front portion of the first connector assembly is inserted into an end of a slot in the second connector assembly and slides laterally along the slot until electrical contacts on the two connector assemblies are aligned. Electrical contacts of the first connector assembly may be biased proud to make contact with recessed electrical contacts in the second connector assembly. A retraction mechanism may be provided to retract the electrical contacts of the first connector assembly during lateral sliding. An interlock mechanism may be provided to prevent unwanted operation of the retraction mechanism.
Abstract:
Electrical components in an electronic device are mounted on substrates such as printed circuits. Printed circuits contain signal paths formed from metal traces. The signal lines in the signal paths of the printed circuits are coupled together using electrical connection structures such as printed circuit board-to-board connectors, contacts joined by anisotropic conductive film, or contacts joined using solder. Electrical connection structures may be surrounded by conductive resilient ring-shaped structures such as conductive foam structures or spring structures. The conductive foam structures may be provided with a metal layer with which the conductive foam structures are soldered to a ring of metal on a printed circuit. Strain relief structures may be formed from an elastomeric ring that surrounds the electrical connection structures or an overmolded plastic structure. Coating layers and conductive plastic may be used in providing strain relief structures with electromagnetic interference shielding capabilities.
Abstract:
An input device can be integrated within an electronic device and/or operably connected to an electronic device through a wired or wireless connection. The input device can include one or more force sensors positioned below a cover element of the input device or an input surface of the electronic device. The input device can include other components and/or functionality, such as a biometric sensor and/or a switch element.
Abstract:
An electronic device may include a mechanical structure that mechanically supports the electronic device. One or more traces may be formed on one or more surfaces of the mechanical structure. Other electrical components may also be mounted on the surface of the mechanical structure and may or may not be connected to one or more of the traces. Additionally, one or more passivation layers may be formed on one or more of the surfaces, traces, and/or other electrical components and one or more traces and/or other electrical components may be intermixed with such passivation layers. In this way, the mechanical structure may be operable to function as an electrical component of the electronic device.
Abstract:
An electronic device may have buttons, a display, and a vibrator unit. Buttons may be included in electronic devices such as glass buttons, metal buttons, buttons that are assembled on printed circuit boards, and buttons that are partly formed from antenna structures. Button coatings may be used to improve the sliding performance of metal-on-metal buttons. A layer of polymer may be interposed between a button plate and a housing structure. A glass button member may have an underside on which a layer of patterned ink is formed. Elastomeric members may be used to reduce button rattle. Portions of a button may be provided with conductive features that form portions of an antenna.
Abstract:
Conductive contacts can be disposed on multiple substrates or on different surfaces of a single substrate. Conductive material is disposed over at least a portion of the two conductive contacts to electrically connect the contacts. The conductive material may be disposed over at least one surface between the conductive contacts. One or more conductive borders can be formed on a surface of a conductive layer. The conductive border or borders can improve signal transmission across the surface of the conductive layer.
Abstract:
An electronic device may have a housing. Electrical components may be mounted in an interior portion of the housing. A display may be mounted to the housing to display images for a user. A button may have a movable button member that moves inwardly and outwardly with respect to the housing. Control circuitry can use a sensor to monitor button press activity on the button. A visual indicator such as an electrophoretic display or other low power display may be mounted on a protruding portion of the button member. The control circuitry can alter the visual appearance of the visual indicator in response to detection of button presses on the button member. The button may be sealed to prevent intrusion of moisture into the interior of the housing.
Abstract:
Board-to-board connectors that consume a minimal amount of board area, are simple to assemble, and provide a clear indication that a proper connection has been made. One example may consume minimal area, since only a retention key and slots in boards and connectors are needed. The connector may be simple to assemble since it may be as simple as stacking components, pushing down, and turning a retention key. Further, a first and a first line on a key and a cowling may be aligned after assembly to provide a clear indication that the connector has been properly assembled.