Abstract:
Methods for forming fin structures with desired materials formed on different locations of the fin structure using a selective deposition process for fin field effect transistors (FinFETs) are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes depositing a first material on a substrate having a three-dimensional (3D) structure formed thereon while performing an implantation process to dope a first region of the 3D structure. The first material may be removed and a second material may be deposited on the 3D structure. The second material may selectively grow on a second region of the 3D structure.
Abstract:
Methods for forming fin structure with desired materials formed on different locations of the fin structure using an ion implantation process to define an etching stop layer followed by an etching process for manufacturing three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips are provided. In one embodiment, a method for forming a structure on a substrate includes performing an ion implantation process on a substrate having a plurality of structures formed thereon, forming an ion treated region in the structure at an interface between the ion treated region and an untreated region in the structure defining an etch stop layer, and performing a remote plasma etching process to etch the treated region from the substrate to exposed the untreated region.
Abstract:
Embodiments of the disclosure include apparatus and methods for modifying a surface of a substrate using a surface modification process. The process of modifying a surface of a substrate generally includes the alteration of a physical or chemical property and/or redistribution of a portion of an exposed material on the surface of the substrate by use of one or more energetic particle beams while the substrate is disposed within a particle beam modification apparatus. Embodiments of the disclosure also provide a surface modification process that includes one or more pre-modification processing steps and/or one or more post-modification processing steps that are all performed within one processing system.
Abstract:
Embodiments described herein provide an asymmetric optical metrology system for evaluating and inspecting the performance of optical devices, such as augmented reality (AR) waveguide combiners. The system utilizes an asymmetric optical configuration and fly-eye illumination to enhance the detection limit of image sharpness and the accuracy of luminance uniformity. By employing different lenses with various focal lengths, the system increases the sampling rate in the angular space, addressing the challenges of form factor limitations and pixel density inherent in conventional metrology tools. Embodiments described herein offer improved contrast and sharp image details, as well as a compact design, making it suitable for the development, optimization, and quality control of optical devices, such as AR waveguide combiners.
Abstract:
The present disclosure generally relates to methods of forming optical devices comprising nanostructures disposed on transparent substrates. A first process of forming the nanostructures comprises depositing a first layer of a first material on a glass substrate, forming one or more trenches in the first layer, and depositing a second layer of a second material in the one or more holes to trenches a first alternating layer of alternating first portions of the first material and second portions of the second material. The first process is repeated one or more times to form additional alternating layers over the first alternating layer. Each first portion of each alternating layer is disposed in contact with and offset a distance from an adjacent first portion in adjacent alternating layers. A second process comprises removing either the first or the second portions from each alternating layer to form the plurality of nanostructures.
Abstract:
Embodiments described herein provide for methods of forming optical device structures. The methods utilize rotation of a substrate, to have the optical device structures formed thereon, and tunability of etch rates of a patterned resist disposed over the substrate and one of a device layer or the substrate to form the optical device structures without multiple lithographic patterning steps and angled etch steps.
Abstract:
Embodiments of the present application generally relate to augmented reality and virtual reality glasses having stacked lenses. The augmented reality (AR) and virtual reality (VR) glasses includes a pair of lenses retained by a frame. A lens stack is utilized in the pair of lenses. The lens stack may include multiple metasurfaces that improve the focus adjustment for both the real and virtual images as well as a prescription lens or prescription metasurface in the lens stack. The metasurfaces are coupled to a waveguide combiner to assist in overlaying virtual images on ambient environments. By utilizing a lens stack, the total weight of the glasses will decrease.
Abstract:
Embodiments described herein relate to a method of using an apparatus for forming waveguides. The method includes positioning a substrate at a first rotation angle, exposing the substrate to an ion beam, forming first partial trenches defined by adjacent angled device structures with the first device angle, rotating the substrate to a second rotation angle, exposing the substrate to the ion beam, etching the first partial trenches, and repeating the method from about 1 cycle to about 100 cycles to form a plurality of trenches defined by adjacent angled device structures. The first rotation angle is selected to form one or more angled device structures with a first device angle relative to a vector parallel to the substrate. The ion beam is configured to contact the substrate at a beam angle ϑ relative to a surface normal of the substrate.
Abstract:
Embodiments of the present disclosure relate to methods, systems, and apparatus for inkjet printing self-assembled monolayer (SAM) structures on substrates. In one embodiment, which can be combined with other embodiments, one or more SAM layers are printed on a substrate surface of a substrate in a localized manner such that a portion of the substrate surface is left exposed to a processing region of the inkjet chamber. The printing includes spraying one or more subsections of the substrate surface with an ink, the ink having a SAM composition. The SAM composition includes an active component, and a hydrophobic tail.
Abstract:
Methods of forming a resist model for angled gratings on optical devices. In one example, a method includes designing a model with a model area and a verification area with initial mask patterns having a first grating pattern with a first angle and a first critical dimension and fabricating test masks with the model area having a first model angle and a first model critical dimension and the verification area having a first verification angle and a first verification critical dimension. The method also includes patterning a substrate with the test masks, measuring the first model angle, the first model critical dimension, the first verification angle and the first verification critical dimension, and fabricating a new device mask if the first verification angle is within the threshold range of the first desired angle and the first verification critical dimension is within the threshold range of the first desired critical dimension.