Abstract:
The present disclosure provides a TFET, which comprises: a substrate; a channel region formed in the substrate, and a source region and a drain region formed on two sides of the channel region; a gate stack formed on the channel region, wherein the gate stack comprises: a gate dielectric layer, and at least a first gate electrode and a second gate electrode distributed in a direction from the source region to the drain region and formed on the gate dielectric layer, and the first gate electrode and the second gate electrode have different work functions; and a first side wall and a second side wall formed on a side of the first gate electrode and on a side of the second gate electrode respectively.
Abstract:
A static random access memory (SRAM) cell includes a straight fin and a bended fin physically disconnected from the straight fin. The bended fin has a first portion and a second portion parallel to the straight fin. The distance between the first portion of the bended fin and the straight fin is smaller than the distance between the second portion of the bended fin and the straight fin. The SRAM cell includes a pull-down transistor including a portion of a first gate strip, which forms a first and a second sub pull-down transistor with the straight fin and the first portion of the bended fin, respectively. The SRAM cell further includes a pass-gate transistor including a portion of a second gate strip, which forms a first sub pass-gate transistor with the straight fin. The pull-down transistor includes more fins than the pass-gate transistor.
Abstract:
A first semiconductor device of an embodiment includes a first semiconductor layer of a first conductivity type, a first control electrode, an extraction electrode, a second control electrode, and a third control electrode. The first control electrode faces a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, and a fourth semiconductor layer of a first conductivity type, via a first insulating film. The second control electrode and the third control electrode are electrically connected to the extraction electrode, and face the second semiconductor layer under the extraction electrode, via the second insulating film. At least a part of the second control electrode and the whole of the third control electrode are provided under the extraction electrode. The electrical resistance of the second control electrode is higher than the electrical resistance of the third control electrode.
Abstract:
A semiconductor device includes: a semiconductor layer disposed above a substrate; an insulating film formed by oxidizing a portion of the semiconductor layer; and an electrode disposed on the insulating film, wherein the insulating film includes gallium oxide, or gallium oxide and indium oxide.
Abstract:
A semiconductor device includes a nitride semiconductor stacked structure including a carrier transit layer and a carrier supply layer; a p-type nitride semiconductor layer provided over the nitride semiconductor stacked structure and including an active region and an inactive region; an n-type nitride semiconductor layer provided on the inactive region in the p-type nitride semiconductor layer; and a gate electrode provided over the active region in the p-type nitride semiconductor layer.
Abstract:
A method for integration is disclosed herein. The method includes forming an N-type double drain (NDD) layer, and fabricating at least one transistor from a controller circuitry and a transistor switch on a single chip. The controller circuitry is operable for controlling the transistor switch.
Abstract:
A fin field-effect transistor (finFET) device having reduced capacitance, access resistance, and contact resistance is formed. A buried oxide, a fin, a gate, and first spacers are provided. The fin is doped to form extension junctions extending under the gate. Second spacers are formed on top of the extension junctions. Each is second spacer adjacent to one of the first spacers to either side of the gate. The extension junctions and the buried oxide not protected by the gate, the first spacers, and the second spacers are etched back to create voids. The voids are filled with a semiconductor material such that a top surface of the semiconductor material extending below top surfaces of the extension junctions, to form recessed source-drain regions. A silicide layer is formed on the recessed source-drain regions, the extension junctions, and the gate not protected by the first spacers and the second spacers.
Abstract:
Embodiments of this invention provide a method to fabricate an electrical contact. The method includes providing a substrate of a compound Group III-V semiconductor material having at least one electrically conducting doped region adjacent to a surface of the substrate. The method further includes fabricating the electrical contact to the at least one electrically conducting doped region by depositing a single crystal layer of germanium over the surface of the substrate so as to at least partially overlie the at least one electrically conducting doped region, converting the single crystal layer of germanium into a layer of amorphous germanium by implanting a dopant, forming a metal layer over exposed surfaces of the amorphous germanium layer, and performing a metal-induced crystallization (MIC) process on the amorphous germanium layer having the overlying metal layer to convert the amorphous germanium layer to a crystalline germanium layer and to activate the implanted dopant. The electrical contact can be a source or a drain contact of a transistor.
Abstract:
A transistor is provided that includes a silicon layer including a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, and a sidewall spacer disposed on sidewalls of the gate stack. The gate stack includes a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The sidewall spacer includes a high dielectric constant material and covers the sidewalls of at least the second and third layers of the gate stack. Also provided is a method for fabricating such a transistor.
Abstract:
A method of forming an electrical device is provided that includes forming at least one semiconductor device on a first semiconductor layer of the SOI substrate. A handling structure is formed contacting the at least one semiconductor device and the first semiconductor layer. A second semiconductor layer and at least a portion of the dielectric layer of the SOI substrate are removed to provide a substantially exposed surface of the first semiconductor layer. A retrograded well may be formed by implanting dopant through the substantially exposed surface of the first semiconductor layer into a first thickness of the semiconductor layer that extends from the substantially exposed surface of the semiconductor layer, wherein a remaining thickness of the semiconductor layer is substantially free of the retrograded well dopant. The retrograded well may be laser annealed.