Abstract:
A phototherapy method for assisting the transvenous lead placement for cardiac resynchronization therapy (CRT) and dilation of occluded veins for any implantable lead placement. The phototherapy treatment helps increase blood flow, reduce inflammation, and enhance angiogenesis to facilitate optimal positioning of the leads.
Abstract:
Naphthalimide compounds are used in tissue bonding and protein cross-linking applications. When activated by an activating agent, such as light in the 400-500 nm absorption range, the naphthalimide compounds form chemically-reactive species that cross-link proteins, bond connective tissues together, and bond tissues and other biomaterials together. A naphthalimide-labeled biomolecule, such as a naphthalimide-labeled chitosan, is also capable of bonding tissues without subsequent direct illumination of the contacted tissue area. The naphthalimide compounds may be used in tissue or arterial repair, stabilization of an expanded arterial wall after angioplasty, tethering pharmaceutical agents to tissue surfaces to provide local drug delivery, and for chemically bonding skin care products, sunscreens, and cosmetics to the skin.
Abstract:
The present invention is drawn to apparatus for transcutaneous photodynamic therapy (“PDT”) of a target tissue or compositions in a mammalian subject, which includes a light source that is external to the subject and is selected from among one or a plurality of laser diodes; light emitting diodes; electroluminescent light source; incandescent light sources; cold cathode fluorescent light sources; organic polymer light sources; or inorganic light sources, where the light source is adapted to direct the light in a direction lengthwise and parallel to a vessel wall comprising the lesion.
Abstract:
Systems and methods treat superficial venous malformations, such as spider veins. The systems and methods distribute a light-reactive agent, e.g., verteporfin, at or near an inner wall of a vein. The systems and methods activate the light-reactive agent by applying non-thermal light energy at a wavelength that activates the light-reactive agent to cause localize injury to the inner wall of the vein.
Abstract:
An implantable medical device includes a light emitting circuit incorporated into an intravascular stent. The light emitting circuit emits a light to an ischemic region. The light has characteristics suitable for reliving the angina symptoms associated with ischemia.
Abstract:
Light generating devices for illuminating portions of vascular tissue to administer photodynamic therapy, and usable with, or including a distal protection device. A first device includes a hollow tip, a flushing lumen, a guidewire lumen, and at least one of a light source, and a hollow light transmissive shaft that is adapted to accommodate a light source. If desired, the device can include a balloon, so that a portion of a body lumen between the balloon and the distal protection device is isolated when the balloon is inflated. A second device includes inner and outer catheters, the outer catheter including a balloon, and the inner catheter including a light source encompassed by another balloon. Yet another device is a catheter having two balloons and a sleeve extending there between. Within the sleeve, the catheter includes a light source and an expanding member.
Abstract:
Systems and methods treat superficial venous malformations, such as spider veins. The systems and methods distribute a light-reactive agent, e.g., verteporfin, at or near an inner wall of a vein. The systems and methods activate the light-reactive agent by applying non-thermal light energy at a wavelength that activates the light-reactive agent to cause localize injury to the inner wall of the vein.
Abstract:
The present invention relates to devices for detection and therapy of active atheromatous plaque and/or thin-capped fibro-atheroma (“vulnerable plaque”), using selectively targeted fluorescent, radiolabeled, or fluorescent and radiolabeled compositions. The present invention further relates to methods and devices for detection and therapy of active atheromatous plaques and/or vulnerable plaques, using selectively targeted beta-emitting compositions, optionally comprising fluorescent compositions.
Abstract:
Light generating devices for illuminating portions of vascular tissue, to render photodynamic therapy. In one embodiment, a light source array preferably including a plurality of light emitting diodes, a focusing lens, and a light diffusing element are included in a distal end of a catheter. A balloon is optionally provided to interrupt blood flow that can block the transmission of light, and to center the apparatus in a blood vessel. Optical fibers optionally direct light from the light source to the diffusing element. The light source array can have a radial or linear configuration and can produce more than one wavelength of light for activating different photoreactive agents. Linear light source elements are particularly useful to treat elongate portions of tissue in a vessel. One embodiment intended for use with a conventional balloon catheter integrates light sources into a guidewire.