摘要:
A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
摘要:
A laser system may include a first laser source configured to output a first laser energy at a first wavelength, a second laser source configured to output a second laser energy at a second wavelength, and a combiner configured to receive the first and second laser energies and output a dual-wavelength laser energy. The first and second wavelengths are different, and first and second laser energies are output simultaneously. Related systems and methods are also disclosed.
摘要:
A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
摘要:
The medical laser user interface of the present invention generally comprises a medical laser unit and a control system. The medical laser unit includes an optical probe for delivering laser light to a patient's tissue. The control system controls operation of the medical laser unit. Specifically, the control system provides a foot pedal system that enables the user to switch between the delivery of a first wavelength of laser light and a second wavelength of laser light through depression of a foot pedal. In a first embodiment, a single foot pedal can be used to toggle the wavelengths, where as in a second embodiment two foot pedals can be use, one for the first wavelength and one for the second wavelength. The two wavelengths provided include a wavelength for vaporization of tissue and a wavelength for coagulation.
摘要:
A multiwavelength laser-based intense light source is described having applications in incision, excision and ablation of soft tissues with minimal collateral tissue damage. The light source combines the output of a plurality of relatively low power laser sources, emitting radiation in the region of the electromagnetic spectrum bounded by approximately 350 nm to 450 nm, where the combined output may be coupled into a single fiber optic energy delivery device: a standard surgical probe. Spectral and spatial beam combining are used to produce an incoherent light source with relatively low average power at any given wavelength, but with high total power and superior M2 beam quality, targeting multiple chromophores in target tissue and tissue breakdown product chromophores for consistently high and target absorption without indiscriminant char interference throughout a surgical procedure.
摘要:
Exemplary embodiments of the present disclosure include systems and methods capable of imaging, manipulating, and analyzing tissue using light, including for example, coagulating and breaking the molecular bonds (e.g. cutting) tissue.
摘要:
A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
摘要:
A system and method of altering damaged mammalian skin using a multiphoton processes is disclosed. A femtosecond laser initiates a multiphoton event using pulse energies of 2-5 mJ thereby causing multiphoton ablation without damaging surrounding tissue. The laser is focused to the vicinity of a target organelle that occurs naturally within the damaged skin, and is related to the dermatological condition being addressed. The type of organelle depends on the condition being addressed, and may be targeted by the depth beneath the surface of the skin at which it is located. The femtosecond laser beam is focused to an intensity of least 1012 W/cm2 to initiate the multiphoton event transforms the targeted organelle to mitigate the damage to the skin.
摘要:
Systems and methods are disclosed herein for applying near-infrared optical energies and dosimetries to alter the bioenergetic steady-state trans-membrane and mitochondrial potentials (ΔΨ-steady) of all irradiated cells through an optical depolarization effect. This depolarization causes a concomitant decrease in the absolute value of the trans-membrane potentials ΔΨ of the irradiated mitochondrial and plasma membranes. Many cellular anabolic reactions and drug-resistance mechanisms can be rendered less functional and/or mitigated by a decrease in a membrane potential ΔΨ, the affiliated weakening of the proton motive force Δp, and the associated lowered phosphorylation potential ΔGp. Within the area of irradiation exposure, the decrease in membrane potentials ΔΨ will occur in bacterial, fungal and mammalian cells in unison. This membrane depolarization provides the ability to potentiate antimicrobial, antifungal and/or antineoplastic drugs against only targeted undesirable cells.
摘要翻译:本文公开了用于应用近红外光学能量和剂量测定法以通过光学去极化效应改变所有辐射细胞的生物能量稳态跨膜和线粒体电位(&Dgr;Ψ稳定)的系统和方法。 这种去极化引起照射的线粒体和质膜的跨膜电位和Dgr的绝对值的同时降低。 许多细胞合成代谢反应和药物抗性机制可以通过膜电位降低而降低功能和/或减轻Ψ,质子动力和Dgr; p的相关弱化以及相关的降低的磷酸化潜能和Dgr; Gp 。 在照射暴露的范围内,细胞,真菌和哺乳动物细胞一致会发生膜电位降低和Ψ。 该膜去极化提供了针对仅靶向不期望的细胞增强抗微生物,抗真菌和/或抗肿瘤药物的能力。
摘要:
An ophthalmic laser system generating a first beam at a wavelength suitable for performing selective laser trabeculoplasty and selectively generating a second beam at a wavelength suitable for performing secondary cataract surgery procedures. The laser system is able to select between directing the first beam or the second beam to the eye of a patient. The first beam is suitably generated at 1064 nm from a Nd:YAG laser and the second beam is frequency doubled to 532 nm in a KTP doubling crystal.