Abstract:
Systems, devices, and methods for capturing and displaying picture data including picture orientation information are described. In one innovative aspect, a method for transmitting media information is provided. The method includes obtaining picture or video information, said picture or video information including image data and orientation information of a media capture unit when the picture or video information is obtained. The method further includes encoding said picture or video information, wherein the orientation information is included in a first portion and the image data is included in a second portion, the second portion being encoded and the first portion being distinct from the second portion. The method also includes transmitting the first portion and the second portion.
Abstract:
In some examples, a video encoder includes multiple sequence parameter set (SPS) IDs in an SEI message, such that multiple active SPSs can be indicated to a video decoder. In some examples, a video decoder activates a video parameter set (VPS) and/or one or more SPSs through referencing an SEI message, e.g., based on the inclusion of the VPS ID and one or more SPS IDs in the SEI message. The SEI message may be, as examples, an active parameter sets SEI message or a buffering period SEI message.
Abstract:
A first descriptor describes an operation point. The second descriptor is a hierarchy descriptor or a hierarchy extension descriptor. The second descriptor has a hierarchy layer index value equal to a value of the second syntax element. A first value of a first syntax element in the first descriptor specifies that an elementary stream indicated by a second syntax element in the first descriptor, when not present in an elementary stream list, shall be added into the list, and an elementary stream indicated by an index in the second descriptor, when not present in the list, shall be added to the list. Responsive to determining the first syntax element has a second value different from the first value, adding the elementary stream indicated by the second syntax element, when not present in the list, into the list, but not the elementary stream indicated by the index in the second descriptor.
Abstract:
Systems, devices, and methods for capturing and displaying picture data including picture orientation information are described. In one innovative aspect, a method for transmitting media information is provided. The method includes obtaining picture or video information, said picture or video information including image data and orientation information of a media capture unit when the picture or video information is obtained. The method further includes encoding said picture or video information, wherein the orientation information is included in a first portion and the image data is included in a second portion, the second portion being encoded and the first portion being distinct from the second portion. The method also includes transmitting the first portion and the second portion.
Abstract:
A device performs a decoding process as part of a bitstream conformance test. As part of the decoding process, the device performs a bitstream extraction process to extract, from a bitstream, an operation point representation of an operation point defined by a target set of layer identifiers and a target highest temporal identifier. The target set of layer identifiers contains values of layer identifier syntax elements present in the operation point representation, the target set of layer identifiers being a subset of values of layer identifier syntax elements of the bitstream. The target highest temporal identifier is equal to a greatest temporal identifier present in the operation point representation, the target highest temporal identifier being less than or equal to a greatest temporal identifier present in the bitstream. The device decodes network abstraction layer (NAL) units of the operation point representation.
Abstract:
A video encoder generates, based on a reference picture set of a current view component, a reference picture list for the current view component. The reference picture set includes an inter-view reference picture set. The video encoder encodes the current view component based at least in part on one or more reference pictures in the reference picture list. In addition, the video encoder generates a bitstream that includes syntax elements indicating the reference picture set of the current view component. A video decoder parses, from the bitstream, syntax elements indicating the reference picture set of the current view component. The video decoder generates, based on the reference picture set, the reference picture list for the current view component. In addition, the video decoder decodes at least a portion of the current view component based on one or more reference pictures in the reference picture list.
Abstract:
A video encoder generates a bitstream that includes a syntax element that indicates whether a picture is encoded according either a first coding mode or a second coding mode. In the first coding mode, the picture is entirely encoded using wavefront parallel processing (WPP). In the second coding mode, each tile of the picture is encoded without using WPP and the picture may have one or more tiles. A video decoder may parse the syntax element from the bitstream. In response to determining that the syntax element has a particular value, the video decoder decodes the picture entirely using WPP. In response to determining that the syntax element does not have the particular value, the video decoder decodes each tile of the picture without using WPP.
Abstract:
A video coder codes a slice header for a slice of video data. The slice header includes a syntax element comprising identifying information for a long term reference picture, wherein the identifying information is explicitly signaled in the slice header or derived from a sequence parameter set corresponding to the slice. When the syntax element indicates that the identifying information for the long term reference picture is explicitly signaled, to code the slice header, the video coder is further configured to code a value for the identifying information for the long term reference picture in the slice header.
Abstract:
In general, the disclosure describes techniques related to block vector coding for Intra Block Copy and Inter modes. In one example, the disclosure is directed to a video coding device comprising a memory configured to store video data and one or more processors. The video coding device is configured to determine a reference picture used for coding the current video block and determine a picture order count (POC) value for the reference picture. In response to the POC value for the reference picture being equal to a POC value for a current picture that includes the current video block, the video coding device sets a value of a syntax element to indicate that a reference picture list includes the current picture. Otherwise, the video coding device sets the value of the syntax element to indicate that the reference picture list does not include the current picture.
Abstract:
In one example, a device for coding video data includes a video coder configured to code, for a tile of an enhancement layer picture, data indicating a number of tiles in a base layer picture that need to be coded before the tile of the enhancement layer picture can be coded, code tiles of the base layer picture corresponding to the number of tiles, and, after coding the tiles of the base layer picture, code the tile of the enhancement layer picture substantially in parallel with at least one other tile in the base layer picture.