Abstract:
Systems and methods for detecting defects on a wafer and generating inspection results for the wafer are provided. One method includes detecting defects on a wafer by comparing output generated by scanning of the wafer performed by an inspection system to one or more defect detection thresholds. The method also includes sampling outliers in the output by selecting the output having the highest values from bins defined based on one or more predetermined criteria. In addition, the method includes selecting a portion of the sampled outliers based on wafer-level analysis of the sampled outliers. The method further includes generating inspection results for the wafer by combining information about the selected portion of the sampled outliers with information about the defects detected using the one or more defect detection thresholds.
Abstract:
Methods and systems for setting up inspection of a specimen with design and noise based care areas are provided. One system includes one or more computer subsystems configured for generating a design-based care area for a specimen. The computer subsystem(s) are also configured for determining one or more output attributes for multiple instances of the care area on the specimen, and the one or more output attributes are determined from output generated by an output acquisition subsystem for the multiple instances. The computer subsystem(s) are further configured for separating the multiple instances of the care area on the specimen into different care area sub-groups such that the different care area sub-groups have statistically different values of the output attribute(s) and selecting a parameter of an inspection recipe for the specimen based on the different care area sub-groups.
Abstract:
Methods and systems for determining a layer on which a defect detected on a wafer is located are provided. One method includes detecting defects on a wafer by directing light to the wafer at first and second angles of incidence and determining locations of the defects on the wafer based on the output corresponding to the defects. For one of the defects detected in the output generated for one spot illuminated on the wafer with the light directed to the wafer at the first and second angles, the method includes comparing the locations of the one of the defects determined based on the output generated with the light directed to the one spot on the wafer at the first and second angles. The method further includes determining a layer of the wafer on which the one of the defects is located based on results of the comparing.
Abstract:
Methods and systems for detecting and classifying defects on a specimen are provided. One system includes one or more components executed by one or more computer subsystems. The one or more components include a neural network configured for detecting defects on a specimen and classifying the defects detected on the specimen. The neural network includes a first portion configured for determining features of images of the specimen generated by an imaging subsystem. The neural network also includes a second portion configured for detecting defects on the specimen based on the determined features of the images and classifying the defects detected on the specimen based on the determined features of the images.
Abstract:
Methods and systems for detecting defects on a specimen are provided. One system includes a storage medium configured for storing images for a physical version of a specimen generated by an inspection system. At least two dies are formed on the specimen with different values of one or more parameters of a fabrication process performed on the specimen. The system also includes computer subsystem(s) configured for comparing portions of the stored images generated at locations on the specimen at which patterns having the same as-designed characteristics are formed with at least two of the different values. The portions of the stored images that are compared are not constrained by locations of the dies on the specimen, locations of the patterns within the dies, or locations of the patterns on the specimen. The computer subsystem(s) are also configured for detecting defects at the locations based on results of the comparing.
Abstract:
Methods and systems for detecting defects in patterns formed on a specimen are provided. One system includes one or more components executed by one or more computer subsystems, and the component(s) include first and second learning based models. The first learning based model generates simulated contours for the patterns based on a design for the specimen, and the simulated contours are expected contours of a defect free version of the patterns in images of the specimen generated by an imaging subsystem. The second learning based model is configured for generating actual contours for the patterns in at least one acquired image of the patterns formed on the specimen. The computer subsystem(s) are configured for comparing the actual contours to the simulated contours and detecting defects in the patterns formed on the specimen based on results of the comparing.
Abstract:
Systems and methods for detecting defects on a reticle are provided. One system includes computer subsystem(s) that include one or more image processing components that acquire images generated by an inspection subsystem for a wafer, a main user interface component that provides information generated for the wafer and the reticle to a user and receives instructions from the user, and an interface component that provides an interface between the one or more image processing components and the main user interface. Unlike currently used systems, the one or more image processing components are configured for performing repeater defect detection by applying a repeater defect detection algorithm to the images acquired by the one or more image processing components, and the repeater defect detection algorithm is configured to detect defects on the wafer using a hot threshold and to identify the defects that are repeater defects.
Abstract:
Methods and systems for generating defect samples are provided. One method includes identifying a set of defects detected on a wafer having the most diversity in values of at least one defect attribute and generating different tiles for different defects in the set. The tiles define a portion of all values for the at least one attribute of all defects detected on the wafer that are closer to the values for the at least one attribute of their corresponding defects than the values for the at least one attribute of other defects. In addition, the method includes separating the defects on the wafer into sample bins corresponding to the different tiles based on their values of the at least one attribute, randomly selecting defect(s) from each of two or more of the sample bins, and creating a defect sample for the wafer that includes the randomly selected defects.
Abstract:
Systems and methods for determining information for defects on a wafer are provided. One system includes an illumination subsystem configured to direct light having one or more illumination wavelengths to a wafer. The one or more illumination wavelengths are selected to cause fluorescence from one or more materials on the wafer without causing fluorescence from one or more other materials on the wafer. The system also includes a detection subsystem configured to detect only the fluorescence from the one or more materials or to detect non-fluorescent light from the wafer without detecting the fluorescence from the one or more materials. In addition, the system includes a computer subsystem configured to determine information for defects on the wafer using output generated by the detection subsystem responsive to the detected fluorescence or the detected non-fluorescent light.
Abstract:
Methods and systems for generating a wafer inspection process are provided. One method includes storing output of detector(s) of an inspection system during scanning of a wafer regardless of whether the output corresponds to defects detected on the wafer and separating physical locations on the wafer that correspond to bit failures detected by testing of the water into a first portion of the physical locations at which the defects were not detected and a second portion of the physical locations at which the defects were detected. In addition, the method includes applying defect detection method(s) to the stored output corresponding to the first portion of the physical locations to detect defects at the first portion of the physical locations and generating a wafer inspection process based on the defects detected by the defect detection method(s) at the first portion of the physical locations.