Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for implementing a data transmission scheme for Narrow-Band Internet of Things (NB-IoT). A User Equipment (UE) combines pairs of antenna ports to generate at least first and second combined antennas ports. The UE receives reference signals transmitted in a narrow band region of a larger system bandwidth, and for each combined port, adds the references signals received on resource elements (REs) of each of the combined pair of antenna ports. The UE determines channel estimates for each combined antenna port based on the added reference signals for the combined port.
Abstract:
The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data.
Abstract:
Various aspects described herein relate to communicating using a configurable bandwidth. A user equipment (UE) can receive a control channel from a serving evolved Node B (eNB), where the control channel includes a resource grant for an uplink shared data channel including a number of resource block groups starting from a starting resource block group in an allocation space, and where the allocation space includes a plurality of resource block groups in a frequency domain over a plurality of symbols in a time domain. The UE can transmit data in the uplink shared data channel starting from the starting resource block group in the allocation space and continuing through the number of resource block groups in the allocation space over the frequency domain first and over the time domain second.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE determines CSI. The UE determines whether to send the CSI based on at least one of a timer or a threshold. The UE sends the CSI upon determining to send the CSI. The UE may send the CSI in a MAC header upon determining to send the CSI. When the UE determines whether to send the CSI based on the threshold, the UE may determine whether to send the CSI based on a difference between the CSI and reference CSI. The UE may determine the reference CSI based on at least one of previously reported CSI, fixed CSI, or an MCS of a received data transmission from a base station. The UE may send CSI to the base station in an initial connection setup with the base station.
Abstract:
In eMTC, channels may be bundled, using repetitions in multiple subframes. SPS and DRX for eMTC may not accommodate such repetitions, because repetitions for a bundled channel may fall only partially within a DRX ON duration. An apparatus addresses this problem by determining a DRX ON duration, determining a set of subframes carrying a bundled M-PDCCH candidate and determining that the DRX ON duration at least partially overlaps with the set of subframes of the bundled M-PDCCH. The apparatus then refrains from decoding the first bundled M-PDCCH candidate, decodes the first bundled M-PDCCH candidate, or extends the DRX ON duration to include the set of subframes entirely and decoding the first bundled M-PDCCH candidate carried in the set of subframes in the extended DRX ON duration. The apparatus may also determine DRX configuration parameters based on parameters of bundled channels, and handle invalid subframes for an SPS grant.
Abstract:
Aspects of the present disclosure provide hybrid automatic repeat request (HARQ) techniques for enhanced machine type communication (eMTC). In one aspect, a method is provided which may be performed by a wireless device such as a user equipment (UE) for determining a HARQ ID. The method generally includes determining a HARQ ID based, at least in part, on a coverage enhancement (CE) level, and performing a HARQ process timeline based, at least in part, on the determined HARQ ID. Another method is provided for determining a subframe to transmit feedback. The method generally includes determining at least one subframe to transmit a physical uplink control channel (PUCCH) to acknowledge one or more downlink transmissions based, at least in part, on availability of uplink subframes following one or more downlink subframes carrying the downlink transmissions to be acknowledged and transmitting the PUCCH in the determined at least one subframe.
Abstract:
A procedure to select a UE as a relay between a machine-type communication (MTC) device and a base station is desired to improve communication between the MTC device and the base station. The apparatus may be a machine-type communication user equipment (M-UE). The apparatus transmits, to one or more user equipments (UEs), an access request to request access to a base station through one or more of the one or more UEs as a relay. The apparatus receives an access request response from the base station, the access request response including selection information about selection of at least one of the one or more UEs as a relay between the M-UE and the base station.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and more specifically to search space configuration in systems utilizing devices with limited communications resources, such as machine type communication (MTC) devices and enhanced MTC (eMTC) devices. An example method generally includes receiving a physical random access channel (PRACH) signal from a first user equipment (UE) on a first narrowband region within a wider system bandwidth and transmitting, in response to the PRACH signal, a random access response (RAR) signal in a first search space in a second narrowband region in at least a first subframe.
Abstract:
Aspects of the present disclosure provided techniques that for wireless communications by a user equipment (UE). An exemplary method, performed by a UE, generally includes determining an additional set of resources to use to enhance measurement of one or more metrics indicative of channel conditions based on measurement of reference signals during a measurement procedure, wherein the additional set of resources are in addition to a defined set of resources used to measure the one or more metrics and performing the measurement procedure based at least on the reference signals, the additional set of resources, and one or more measurement parameters
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to enhanced paging procedures for devices with limited communications resources, such as machine type communication (MTC) devices and enhanced or evolved MTC (eMTC) devices. An example method generally includes determining a set of subframes corresponding to a paging occasion for the UE to receive a paging message from a base station (BS), determining, within the set of subframes, at least one narrowband region for receiving the paging message, and monitoring for the paging message in the at least one narrowband region within the set of subframes.