Abstract:
The subject invention discloses a novel electrolyte for a solid battery system. Specifically, an electrolyte solvent of chlorinated diethyl carbonates demonstrate good electrochemical stability in conjunction with specific anode and cathode materials. When used with a propylene carbonate co-solvent, it reduces or eliminates the decomposition of propylene carbonate during the first cycle. It is appropriate with a variety of electrolyte salts, and especially with LiBF.sub.4. Chloro-substituted diethyl carbonates also show good high and low temperature performance in electrochemical cells.
Abstract:
Provided by the present invention is a new anode material comprised of a carbon obtained by pyrolyzing a polymer of a conjugated vinyl monomer. The carbon is suitable for a lithium intercalated anode as it offers potential advantages of high capacity. The economics of manufacturing such anodes are also beneficial.
Abstract:
The present invention provides a novel composition and method for preventing decomposition of one or more electrochemical cell components comprising an electrode having an active material, and an electrolyte. The method of the invention, for the first time, effectively overcomes problems which arise between the interaction of cell components and contaminate water retained in a cell. Such contaminate water reacts with the electrolyte which comprises a salt of lithium in a solvent. Solubilizing of the salt in solution with attendant interaction between the salt and water causes formation of hydrogen-containing acids. The method of the invention effectively blocks decomposition of a lithium metal oxide cathode active material, and particularly lithium manganese oxide (LMO, nominally LiMn.sub.2 O.sub.4). Such decomposition is prevented by including in the cell a basic compound which forms an electron donor species in the electrolyte solution; and by neutralizing at least a portion of the acid by reacting the donor species with the hydrogen-containing acids thereby preventing decomposition of the lithium manganese oxide by the acid. The preservation of the lithium manganese oxide prevents degradation of other cell components by other mechanism. The basic compound is desirably an organic base, preferably a butylamine.
Abstract:
Electrochemical cells having a current collector that includes a redox polymer film affords overdischarge protection. The redox polymers can reversibly insert anions and/or cations during oxidation and/or reduction thereby rendering the polymers conductive relatively to their neutral state.
Abstract:
A method of increasing the amount of alkali metal that is available during charge/discharge of an electrochemical cell that employs carbon based intercalation anodes is provided. The method comprises of prealkaliation of the carbon anode. By subjecting the anode carbon to the prealkaliation process prior to packaging the electrochemical cell, substantially all the alkali metal (e.g., lithium) which is originally present in the cathode will be available for migration between the anode and cathode during charge/discharge.
Abstract:
Non-aqueous solid electrochemical cells with improved performance can be fabricated by employing intercalation based carbon anodes comprising graphitized microbead carbon particles. When employed in a lithium electrochemical cell sufficient cathode material is employed to intercalate the anode active material to attain a specific electrode capacity of greater than about 372 mAh/g. The electrochemical cell has a cycle life of greater than 200 cycles, and has a first cycle capacity loss of only about 10% to 15%.
Abstract:
A method of enhancing the thermal stability of electrolytic solvents containing lithium salts by the addition of carbonate additives such as lithium carbonate and calcium carbonate is provided. Electrochemical cells comprising electrolytes with the additives are expected to demonstrate improve performance and cycle life.
Abstract:
Disclosed are methods for extending the cycle life of solid, secondary electrolytic cells employing a solid electrolyte. Also disclosed are solid electrolytes comprising from greater than 80 to about 92 weight percent of electrolytic solvents which, when employed in solid, secondary electrolytic cells extend the cycle life of the cells as compared to solid, secondary electrolytic cells employing solid electrolytes having less solvent.
Abstract:
FIG. 1 illustrates a forward perspective view of concealed door, cabinet and frame assembly in accordance with the present invention; and, FIG. 2 illustrates a right, isometric rear perspective view of concealed door, cabinet and frame assembly in accordance with the present invention. The broken lines depict portions of the concealed door, cabinet and frame assembly that form no part of the claimed design.
Abstract:
A method of depositing an active material for a metal ion battery comprising the steps of: providing a conductive material in an electrodeposition bath wherein the electrodeposition bath contains an electrolyte comprising a source of the active material; and electrodepositing the active material onto a surface of the conductive material.