Abstract:
Technology described herein provides carrier-monitoring (CM) signaling approaches that can be used by networks and/or mobile devices. An evolved Node B (eNB) can send an IncMon-support message indicating whether a network supports the increased-number-of-frequencies-to-monitor (IncMon) feature. A UE can apply a default CM configuration if the UE does not receive an IncMon-support message from the eNB. The eNB can use dedicated signaling or broadcast signaling to inform a UE of a default CM configuration or one or more adopted CM configurations that are used in the network. The eNB can also send a list of carriers that are to be monitored to the UE. The UE can also send UE-capability information to the eNB, such as a default CM configuration, an adopted CM configuration, or configurable configurations in different radio access technologies (RATs) supported by the UE.
Abstract:
In an embodiment, an apparatus to be employed in a user equipment (UE) is described. The apparatus includes configuration circuitry operable to determine, based on one or more configuration information messages, a measurement gap for a master evolved Node B (MeNB) that is operable to provide a master cell group (MCG) that is asynchronous with a secondary cell group (SCG) of a secondary evolved Node B (SeNB), wherein subframe boundaries of the MCG are different from subframe boundaries of the SCG; and radio frequency (RF) control circuitry operable to cause RF circuitry to be tuned, at a beginning of the measurement gap based on a subframe boundary of the MCG, to start inter-frequency measurements, wherein the RF circuitry is to be used to transmit or receive data in a serving cell of the MCG and in a serving cell of the SCG. Other embodiments are also described and claimed.
Abstract:
Embodiments of a User Equipment (UE) arranged for handover initiation in a cellular network comprising macro cells and micro cells are disclosed herein. The UE may determine application information associated with an application operating on the UE. The application information can include an operating system identifier. Additionally, the UE can generate a measurement report based on the determined application information. The measurement report can include the application information. Subsequently, the UE can send the measurement report configured to initiate a handover to an Evolved Node B (eNB). The handover can be to a micro cell or a macro cell based on the application information in the measurement report.
Abstract:
Technology for providing core network assistance information from a mobility management entity (MME) in an evolved packet core (EPC) is disclosed. An average radio resource control (RRC) connected state time for a UE is determined. An average RRC idle state time for the UE is also determined. An amount of time that the UE spends in cells of the EPC is identified to determine a number of handover procedures between cells in a selected time period. The core network assistance information communicated to a serving eNB of the UE to enable the serving eNB to reduce UE state transitions for the UE.
Abstract:
Embodiments of user equipment (UE) and method for handover enhancement using a scaled time-to-trigger (TTT) and a time-of-stay are generally described herein. In some embodiments, the TTT is scaled based on at least one of a measured reference signal received quality (RSRQ) value of a serving cell and a time-of-stay in the serving cell.
Abstract:
Systems and methods for signaling in an increased carrier monitoring wireless communication environment are disclosed herein. In some embodiments, a user equipment (UE) may include control circuitry to configure the UE for increased carrier monitoring; determine, based on a first signal received from a network apparatus, whether a reduced performance group carrier is configured; determine, based on a second signal received from the network apparatus, whether a scaling factor is configured; and in response to a determination that no reduced performance group carrier is configured and a determination that no scaling factor is configured, allow the UE to monitor fewer carriers than required by increased carrier monitoring. Other embodiments may be disclosed and/or claimed.
Abstract:
An eNodeB (eNB), user equipment (UE) and method of cell reselection are generally described. While in Radio Resource Control (RRC) Idle mode, the UE may receive via a system information broadcast a cell reselection probability and a cell-specific priority list including a list of neighboring eNBs and their priorities for both macro and small cells operating on at least one frequency different from that of the serving eNB. The UE may generate a random number and compare the random number to the cell reselection probability to determine whether the UE is to reselect. The UE may randomly select among eNBs that have the same, highest priority. The UE may receive a predetermined set of cell reselection criteria from the eNB via a system information broadcast to determine whether or not to perform reselection.
Abstract:
Systems, methods, and device for adjusting an operation time of a radio link failure timer are disclosed herein. User equipment (UE) may be configured to communicatively couple to an evolved Universal Terrestrial Radio Access Network (E-UTRAN). The UE use different radio link failure timer parameters depending on the speed of the UE. The radio link failure timer may run for a longer time for rapidly moving UEs and run for a shorter time for slowly moving UEs. In an embodiment, the UE may scale the radio link failure timer by a scaling factor. In another embodiment, the UE may include multiple radio link failure timers for different speeds. The radio link failure timer parameters for each speed may be specified by the E-UTRAN in a one-to-one communication. The E-UTRAN may determine which parameters to use for each UE based on characteristics of the UE.
Abstract:
Technology for providing core network assistance information from a mobility management entity (MME) in an evolved packet core (EPC) is disclosed. An average radio resource control (RRC) connected state time for a UE is determined. An average RRC idle state time for the UE is also determined. An amount of time that the UE spends in cells of the EPC is identified to determine a number of handover procedures between cells in a selected time period. The core network assistance information communicated to a serving eNB of the UE to enable the serving eNB to reduce UE state transitions for the UE.