Abstract:
An electron beam column incorporating an asymmetrical detector optics assembly provides improved secondary electron collection. The electron beam column comprises an electron gun, an accelerating region, scanning deflectors, focusing lenses, secondary electron detectors and an asymmetrical detector optics assembly. The detector optics assembly comprises a field-free tube, asymmetrical with respect to the electron optical axis; the asymmetry can be introduced by offsetting the field-free tube from the electron optical axis or by chamfering the end of the tube. In other embodiments the detector optics assembly comprises a field-free tube and a voltage contrast plate, either or both of which are asymmetrical with respect to the electron optical axis.
Abstract:
Ion implantation systems and beamlines therefor are disclosed, in which a ribbon beam of a relatively large aspect ratio is mass analyzed and collimated to provide a mass analyzed ribbon beam for use in implanting one or more workpieces. The beamline system comprises two similar magnets, where the first magnet mass analyzes the ribbon beam to provide an intermediate mass analyzed ion beam, and the second magnet collimates the intermediate beam to provide a uniform mass analyzed ribbon beam to an end station. The symmetrical system provides equidistant beam trajectories for ions across the elongated beam width so as to mitigate non-linearities in the beam transport through the system, such that the resultant mass analyzed beam is highly uniform.
Abstract:
Incorporating the use of a permanent magnet within a GCIB apparatus to separate undesirable monomer ions from a gas cluster ion beam to facilitate improved processing of workpieces. In an alternate embodiment, the effect of the permanent magnet may be controlled by the use of an electrical coil. The above system eliminates problems related to power consumption and heat generation.
Abstract:
The invention relates to an electron/ion gun for electron or ion beams, comprising a beam source and a monochromator. According to the invention, said monochromator is equipped with an additional beam guidance system and a switchover element which conveys the particles coming from the beam source to either the monochromator or the rest of the beam guidance system is provided at the input of the monochromator.
Abstract:
A charged particle beam control system wherein electrodes and magnetic poles can be positioned accurately and easily is provided, together with a charged particle beam optical apparatus and a charged particle beam defect inspection apparatus, which use the charged particle beam control system. A part of a ceramic material is coated with a metal to form a pair of mutually opposing electrodes, and a pair of magnetic poles perpendicularly intersecting the pair of electrodes are provided to construct a Wien filter A. Side surfaces are formed on portions of the electrodes that are not coated with the metal, and first positioning surfaces are formed on the magnetic poles. The electrodes and the magnetic poles are positioned relative to each other by bringing the side surfaces and the positioning surfaces into abutting contact with each other, thereby allowing the electrodes and the magnetic poles to be positioned.
Abstract:
A monochrometer mounted with the electron gun of an electron microscope or the like. This monochrometer does not need movement of a slit. An electron source consisting of any one of a thermal emission-type electron source (such as an LaB6 electron source or a tungsten hairpin), a Schottky emission-type electron source, and a tunneling field emission-type electron source is used. The slit is made of a single metal plate and mounted in position fixedly. Electrons are emitted from the electron source and dispersed within a plane including the slit according to energies. The slit is so positioned that it passes only those of the dispersed electrons which have energies close to the peak energy and blocks electrons having energies higher or lower than the peak energy.
Abstract:
The resolution of a charged particle beam, such as a focused ion beam (FIB), is optimized by providing an energy filter in the ion beam stream. The energy filter permits ions having a desired energy range to pass while dispersing and filtering out any ions outside the desired energy range. By reducing the energy spread of the ion beam, the chromatic aberration of the ion beam is reduced. Consequently, the current density of the ion beam is increased. The energy filter may be, e.g., a Wien type filter that is optimized as an energy filter as opposed to a mass filter. For example, to achieve useful dispersion the energy filter may use a quadrupole structure between two magnetic pole pieces thereby producing a combined quadrupole electric field and dipole electric field within a magnetic field.
Abstract:
There is disclosed an energy filter capable of reducing the Boersch effect. Also, an electron microscope using this energy filter is disclosed. This energy filter is composed of a first-stage energy filter and a second-stage energy filter arranged along the optical axis of an electron beam. The length L1 of the first-stage filter is selected to be greater than the length L2 of the second-stage filter. An energy-selecting slit is positioned in the electron beam path within the free space between the first- and second-stage filters. Each of these two stages of filters is a Wien filter having mutually perpendicular electric and magnetic fields.
Abstract:
The present invention provides an apparatus for acting upon charge particles in dependence upon on or more parameters including mass and/or energy and/or charged state of the particles. The apparatus includes an array of elongate magnetic poles extending longitudinally in an elongation direction of the array; an array reference surface extending in the array elongation direction and passing through the array with a magnetic pole on each side of the reference surface; a means for providing charged particles entering into or originating in the field of the magnetic pole array. The magnetic poles are configured in a plane perpendicular to the elongation direction to give parameter dependent change of direction to charged particles moving in array with a direction of movement substantially parallel to the reference surface, whereby parameter dependent selection of charged particles may be achieved by parameter dependent dispersion in a plane transverse to the reference surface.
Abstract:
A transmission electron microscope that produces a monochromated electron beam and thus has improved spatial resolution. This microscope has a retarding monochromator mounted between the first anode (extraction electrode) of a field emission gun (FEG) and the second anode. The monochromator includes a decelerating portion, a Wien filter and an accelerating portion. An exit slit is so positioned that this exit slit and the object plane of the monochromator are symmetrical with respect to the center of the Wien filter. The beam extracted by the cathode of the gun is monochromated by the monochromator and so the chromatic aberrations can be improved. Consequently, the spatial resolution can be improved.