Abstract:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.
Abstract:
A scanning transmission electron microscope has an electron beam energy analyzer (energy filter) to observe electron beam energy loss spectra and element distribution images. This electron microscope further includes a deflection coil provided on the upstream side of a magnetic prism to correct for the electron beam path in a plane normal to the optical axis and make the electron beam incident to the energy filter, a deflection coil for correcting for the electron beam path in the energy axis direction of an energy dispersion surface formed by the magnetic prism, and a control unit for controlling the exciting conditions of the deflection coils.
Abstract:
The invention relates to an electron/ion gun for electron or ion beams, comprising a beam source and a monochromator. According to the invention, said monochromator is equipped with an additional beam guidance system and a switchover element which conveys the particles coming from the beam source to either the monochromator or the rest of the beam guidance system is provided at the input of the monochromator.