Abstract:
One embodiment of the invention includes a preamplifier system for a magnetic disk-drive. The system includes a current distributor configured to generate a reference current and to decay the reference current from a first magnitude to a second magnitude during a degauss period to degauss a magnetic disk write head. The degauss period defines a transition from a write cycle to a read cycle of the magnetic disk-drive and has a predetermined time duration that is independent of the first magnitude of the reference current during the write cycle. An output driver is configured to provide a write current to the magnetic disk write head having a magnitude with an absolute value that is based on the reference current.
Abstract:
An amplifier system with feedback current cancellation comprises an amplifier with at least one stage, a feedback network, first and second replica circuits, a buffer, second and third resistances, an operational amplifier (op-amp), a transistor, and a current mirror. The feedback network includes a first resistance that communicates with an input and an output of the amplifier. The first and second replica circuits approximately replicate DC characteristics of the output and the input of the amplifier, respectively. An output of the op-amp communicates with a control terminal of the transistor. The current mirror provides a current at the input of the amplifier that is proportional to a second current flowing through the transistor. The buffer communicates with the first replica circuit. The second resistance communicates with an output of the buffer. The third resistance communicates with the second resistance and with the second replica circuit.
Abstract:
An amplifier system with feedback current cancellation comprises an amplifier, a feedback network, an operational amplifier (op-amp), and second, third, and fourth resistances. The amplifier includes an input, an output, and at least one stage. The feedback network includes a first resistance that communicates with the input and the output of the amplifier. The operational amplifier (op-amp) includes an inverting input that communicates with the input of the amplifier, a non-inverting input, and an output. The second resistance communicates with the input of the amplifier and with the output of the op-amp. The third resistance communicates with the output of the op-amp and with the non-inverting input of the op-amp. The fourth resistance communicates with the non-inverting input of the op-amp and with the output of the amplifier.
Abstract:
Methods and apparatus to vary the input impedance of a hard disk read preamplifier are disclosed. A disclosed method amplifies a read signal from a hard disk read head based on the impedance presented by the read head and changes the impedance presented to the read head based on the gain factor.
Abstract:
An amplifier apparatus for use with a sensor includes: (a) a first and a second amplifying circuit segment coupled with the sensor and cooperating to effect substantially balanced handling of signals received from the sensor; the first amplifying circuit segment includes a first transistor device; the second amplifying circuit segment includes a second transistor device; (b) a countercurrent unit coupled with the first and second amplifying circuit segments for receiving a first indicator signal from the first transistor device and a second indicator signal from the second transistor device; the first indicator signal represents a first parameter in the first transistor device; the second indicator signal represents a second parameter in the second transistor device; the countercurrent unit provides feedback signals to at least one of the first transistor and second transistor devices to reduce input impedance of the apparatus.
Abstract:
Embodiments of the present invention provide a mixed-mode amplifier for amplifying signals in data storage devices such as disk drives. In one embodiments, a circuit for amplifying data signals comprises a magnetoresistive sensor having a bias voltage applied thereto; a signal amplifier which amplifies a signal detected by the magnetoresistive sensor having the bias voltage applied thereto; a feedback control block which is coupled to an output of the signal amplifier and outputs a feedback current used to vary a loop gain of the circuit; a bias setting circuit which outputs a bias setting current; and a transimpedance amplifier which receives the bias setting current from the bias setting block and the feedback current from the feedback control block and generates the bias voltage applied to the magnetoresistive sensor.
Abstract:
A device resets a biasing magnetization of a biasing element in a magnetic sensor. The device includes a magnetic structure that is magnetically coupled to the biasing element. A conductive element is disposed around at least a portion of the magnetic structure. When a current is passed through the conductive element, a magnetic field is produced that resets the biasing magnetization of the biasing element.
Abstract:
Circuitry for detecting and recording latches in read bias current may include circuitry for generating a reference voltage, a pair of current to voltage converters to convert the bias and reference currents to voltage signals, a comparator to compare those two voltages, a latch to latch the compared signal, and a counter/register to count and store the number of glitches that have been detected. It may be possible to read from the register the number of detected glitches to be used in diagnosing faults in the disk drive system. In addition, it may be possible to provide a reset input to the register to zero the counter.
Abstract:
The present invention provides a ferromagnetic tunnel magnetoresistive film which is associated with a high output and whose magnetoresistive ratio is less dependent on a bias voltage. In a three-terminal ferromagnetic tunnel magnetoresistive element, a decrease in an output is suppressed by a bias voltage V1 applied to one of the tunnel junctions. By employing half-metallic ferromagnets 11 and 12 in the element, the output can be enhanced and the dependency on the applied bias voltage can be reduced.
Abstract:
A write driver circuit (38) uses a matching resistors (R0, R1) to match the impedance of the head (32) disposed between output nodes (OUTP, OUTN). Control circuitry (Q4, Q5, Q6, Q7, R2, R4, R6 and R7) maintains the voltage at reference voltage nodes (VREFP, REFN) at essentially the same voltage as its corresponding output node. The matching resistor is disposed between the reference voltage node and the output node along with a driver (40a, 40b), which may be implemented as an AB driver. Since the voltage between the reference node and the output node is generally zero, very little current is shunted by the matching resistors, and thus, there is very little power wasted by the matching resistors. In the preferred embodiment, the output transistors of the AB drivers are driven by switched current sources (Q28 and Q29) to provide enhanced current to the bases of the output transistors on an as needed basis.