Abstract:
A laser apparatus according to embodiments may include a laser chamber including a laser gain medium; a power source; a first electrode to which a voltage is applied from the power source and a second electrode that is grounded, the first and second electrodes being disposed in the laser chamber; and a connector connected to the power source, and supporting the first electrode in a way that allows the first electrode to move toward a side where the second electrode is disposed.
Abstract:
An optical device may include: an optical module disposed in a beam delivery path of a laser beam; a beam adjusting unit disposed in the beam delivery path for adjusting the beam delivery path of the laser beam; a measuring unit disposed in the beam delivery path for detecting the beam delivery path; and a control unit for controlling the beam adjusting unit based on a detection result of the beam delivery path of the laser beam detected by the measuring unit.
Abstract:
A laser apparatus includes at least one oscillator configured to output a first laser beam; a filter device provided in a beam path of the first laser beam, the filter device including either an optical element having transmittance properties depending on a polarization direction and a wavelength and a filter device including a wavelength dispersive element; and at least one amplifier configured to amplify a second laser beam from the filter device and output as a third laser beam.
Abstract:
A target supply device may include a reservoir configured to hold a target material in its interior in liquid form, a vibrating element configured to apply vibrations to the reservoir, a target sensor configured to detect droplets of the target material outputted from the reservoir, a control unit configured to set parameters based on a result of the detection performed by the target sensor, a function generator configured to generate an electrical signal having a waveform based on the parameters, and a power source configured to apply a driving voltage to the vibrating element in accordance with the electrical signal.
Abstract:
A cooling water temperature controlling device includes a heat exchanger for heat-exchanging between primary cooling water and secondary cooling water, a tank for storing the secondary cooling water, an injection pipe connecting the tank and a secondary cooling water supply unit, a valve for controlling a flow rate of the secondary cooling water from the secondary cooling water supply unit to the tank, a fluid level detection unit for detecting a level of the secondary cooling water in the tank, a first circulation pipe connecting the tank and the heat exchanger, a second circulation pipe connecting the heat exchanger and a temperature-control target, a third circulation pipe connecting the tank and the temperature-control target, a pump for circulating the secondary cooling water through the first to third circulation pipes, and a controller for controlling the valve and the pump based on the detected fluid level.
Abstract:
An extreme ultraviolet light generation system used with a laser apparatus may be provided, and the extreme ultraviolet light generation system may include: a chamber including at least one window for at least one laser beam and a target supply unit for supplying a target material into the chamber; and at least one polarization control unit, provided on a laser beam path, for controlling a polarization state of the at least one laser beam.
Abstract:
A degree of polarization control device includes: a calcium fluoride crystal substrate for transmitting a laser beam; a polarization monitor for measuring the degree of polarization of a laser beam transmitted through the calcium fluoride crystal substrate; and a controller for controlling the rotation angle of the calcium fluoride crystal substrate according to the degree of polarization measured by the polarization monitor; the calcium fluoride crystal substrate being formed by a flat plate having a laser beam entering surface and a laser beam exiting surface running in parallel with the (111) crystal face, the Brewster angle being selected for the incident angle, the rotation angle around the [111] axis operating as a central axis being controlled by the controller.
Abstract:
An extreme ultraviolet light generation apparatus may include: a laser apparatus; a chamber provided with an inlet for introducing a laser beam outputted from the laser apparatus to the inside thereof; a target supply unit provided to the chamber for supplying a target material to a predetermined region inside the chamber; a collector mirror disposed in the chamber for collecting extreme ultraviolet light generated when the target material is irradiated with the laser beam in the chamber; an extreme ultraviolet light detection unit for detecting energy of the extreme ultraviolet light; and an energy control unit for controlling energy of the extreme ultraviolet light.
Abstract:
A laser beam amplifier with high optical axis stability is provided. The laser beam amplifier includes: a container for accommodating a laser medium; a pair of electrodes for performing discharge in the laser medium to form an amplification region for a laser beam in the laser medium; and an optical system for forming an optical path between a first point, upon which the laser beam is incident, and a second point, from which the laser beam is outputted, such that the amplification region is located in the optical path between the first point and the second point, wherein the first point and the second point are conjugate to each other, and the laser beam incident upon the first point is amplified while passing through the amplification region at least twice and then transferred to the second point.
Abstract:
A device for collecting EUV light from a plasma generation region includes first and second EUV collector mirrors. The first EUV collector mirror has a first spheroidal reflective surface and arranged such that a first focus of the first spheroidal reflective surface lies in the plasma generation region and a second focus of the first spheroidal reflective surface lies in a predetermined intermediate focus region. The second EUV collector mirror has a second spheroidal reflective surface and arranged such that a third focus of the second spheroidal reflective surface lies in the plasma generation region and a fourth focus of the second spheroidal reflective surface lies in the predetermined intermediate focus region.