Abstract:
A power generation system includes at least one generator that generates a medium voltage direct current that has a positive DC voltage output and a negative DC voltage output. The system also provides a medium voltage DC (MVDC) cable system with a positive pole cable and a negative pole cable, wherein the positive pole cable is connected to the positive DC voltage output and the negative pole cable is connected to the negative DC voltage output. A substation is connected to the MVDC cable system and includes at least one DC/DC step-up converter to step-up the medium voltage direct current to a high voltage direct current.
Abstract:
An exemplary method and an apparatus implementing the method for an arrangement having a three-phase, multi-level inverter, an output LCL-filter connecting the inverter to a grid, and a virtual-ground connection between the LCL-filter and the neutral point of the DC-link. The method includes determining a zero-sequence component of an LCL-filter inverter-side current, calculating a zero-sequence damping and balancing voltage term based on the LCL-filter inverter-side current zero-sequence component and voltages over the two halves of the DC-link, and adding the zero-sequence damping and voltage balancing term to the output voltage reference.
Abstract:
A system and method utilize model-based control of a froth flotation process for concentrating a desired target mineral from ground ore. The system and method exploit real time information about a surface tension of a pulp or flotation solution including the minerals. The surface tension represents exemplary additional information about the surface chemistry in the flotation process, and as such enables a refinement of a pulp model used in control of the flotation process. Ultimately, operational efficiency of a froth flotation plant is increased.
Abstract:
Methods and systems for energy benchmarking for gap analysis are disclosed, for example, for a plant in a paper industry having at least one equipment. The method can include a) monitoring the performance parameter of one or more equipments of the plant and/or of one or more other plants and/or of the plant or other plants, the performance parameter being evaluated from design data or plant model or historical operating data or current operating data; b) comparing at least one performance parameter against at least one other performance parameter of the at least one equipment of the one plant or other plant, or of the one plant or at least one other plant or a combination thereof; c) selecting one of the performance parameters from the at least one or other performance parameters being compared; d) setting the value of the selected performance parameter as a benchmark; and e) controlling the plant based on the benchmark.
Abstract:
DC-DC converter systems are disclosed. DC-DC converter systems may include an input, an output, a resonant switched-capacitor DC-DC converter, and a second DC-DC converter. The resonant switched-capacitor DC-DC converter may include a first input side and a first output side. The second DC-DC converter may include a second input side and a second output side. The first input side may be connected to the input, the second input side may be connected to an input voltage, and the first and second output sides may be connected in series to the output. In some examples, the second DC-DC converter may be a buck-boost DC-DC converter.
Abstract:
A reverse osmosis separation process is disclosed, such as for desalination and waste water reuse process, wherein an effectiveness of membrane cleaning can be estimated. Exemplary embodiments operate the reverse osmosis membrane cleaning process for a controlled time for cleaning and with a controlled value of chemical concentration in a chemical liquor prepared for cleaning the membrane. A method can include estimating fouling status of the membrane and determining a controlled value of chemical concentration in the chemical liquor, and a controlled time for cleaning based on the fouling status of the membrane.
Abstract:
A method, system and computer program product enhance the commercial value of electrical power produced from a wind turbine production facility. Features include the use of a premier power conversion device that provides an alternative source of power for supplementing an output power of the wind turbine generation facility when lull periods for wind speed appear. The invention includes a communications infrastructure and coordination mechanism for establishing a relationship with another power production facility such that when excess electrical power is produced by the wind turbine facility, the excess may be provided to the power grid while the other energy production facility cuts back on its output production by a corresponding amount. A tracking mechanism keeps track of the amount of potential energy that was not expended at the other facility and places this amount in a virtual energy storage account, for the benefit of the wind turbine facility. When, the wind turbine power production facility experiences a shortfall in its power production output it may make a request to the other source of electric power, and request that an increase its power output on behalf of the wind turbine facility. This substitution of one power production facility for another is referred to herein as a virtual energy storage mechanism. Furthermore, another feature of the present invention is the use of a renewal power exchange mechanism that creates a market for trading renewable units of power, which have been converted into nullpremier powernull and/or nullguaranteednull by secondary sources of power source to provide a reliable source of power to the power grid as required by contract.
Abstract:
Among other things, one or more techniques and/or systems are provided for developing a criticality profile of an industrial asset. The criticality profile describes the importance of the industrial asset to a system in terms of one or more criticality metrics and/or one or more confidence profiles. Such metrics may include an operational metric indicative of the operation impact of the industrial asset on a system if the industrial asset remains unchanged or enters a degraded or improved state, a restoration metric indicative of a complexity of restoring the industrial asset to an operational state from the unchanged or degraded state and/or complexity of improving the industrial asset to an improved state, and/or an interdependency metric indicative of a relationship between the industrial asset and one or more other industrial assets and/or between the industrial asset and one or more structures in an environment associated with the industrial asset.
Abstract:
An apparatus and a method for attenuating water pressure pulses generated during sea piling when a percussion mechanism is used, including the stage of driving at least one pile into an earth by a percussion mechanism, while along at least a part of its axial extension, the pile is surrounded by water and at least partly by a tubular outer sleeve; and at least one gas-filled space is provided between the inner periphery of the outer sleeve and the outer periphery of the pile. The apparatus includes mechanisms for providing the gas-filled space.
Abstract:
The present application is concerned with a system for transmitting and/or receiving the control and sensing signals between the control units and the power electronic components. One system according to the present application comprises: a transceiver adapted to modulate the communication signal on a communication signal frequency band, and a coupler connected to the power conductor and adapted to couple the modulated communication signal to the power conductor. The present application also concerns a method for transmitting and receiving the control and sensing signals.