Abstract:
A power generation system includes at least one generator that generates a medium voltage direct current that has a positive DC voltage output and a negative DC voltage output. The system also provides a medium voltage DC (MVDC) cable system with a positive pole cable and a negative pole cable, wherein the positive pole cable is connected to the positive DC voltage output and the negative pole cable is connected to the negative DC voltage output. A substation is connected to the MVDC cable system and includes at least one DC/DC step-up converter to step-up the medium voltage direct current to a high voltage direct current.
Abstract:
A method and system restores power in a power distribution network. The network includes a plurality of power sources, a plurality of loading zones, a plurality of switching devices interconnected between the plurality of power sources and the plurality of loading zones, and an intelligent electronic device associated with each of the plurality of switching devices to control the switching devices. A base network state is defined and a power restoration logic is created for the base network state. A simulation is run for the power restoration logic and then the power restoration logic is transmitted to a power restoration controller which thereafter monitors and controls the intelligent electronic devices.
Abstract:
A method and system restores power in a power distribution network. The network includes a plurality of power sources, a plurality of loading zones, a plurality of switching devices interconnected between the plurality of power sources and the plurality of loading zones, and an intelligent electronic device associated with each of the plurality of switching devices to control the switching devices. A base network state is defined and a power restoration logic is created for the base network state. A simulation is run for the power restoration logic and then the power restoration logic is transmitted to a power restoration controller which thereafter monitors and controls the intelligent electronic devices.
Abstract:
A power generation system includes at least one generator that generates a medium voltage direct current that has a positive DC voltage output and a negative DC voltage output. The system also provides a medium voltage DC (MVDC) cable system with a positive pole cable and a negative pole cable, wherein the positive pole cable is connected to the positive DC voltage output and the negative pole cable is connected to the negative DC voltage output. A substation is connected to the MVDC cable system and includes at least one DC/DC step-up converter to step-up the medium voltage direct current to a high voltage direct current.