摘要:
Disclosed herein is a bonding force test device, including: a holder mounted with a sample to which a plurality of subjects to be tested are bonded; a rotating part rotating the holder; and a fixing tip disposed in a direction in which the fixing tip faces the holder, wherein at the time of rotating the holder, the fixing tip contacts any one of the subjects to be tested in the sample and a shearing stress is applied to a bonded portion between the fixing tip and any one subject to be tested.
摘要:
A piezoelectric material contains a perovskite oxynitride expressed by the General Formula: (Ba1-xSrx)(Ti1-3z(Nb1-yTay)3z)(O1-wNw)3. In the formula, x, y, z and w are numerical values satisfying the relationships: 0≦x≦1, 0≦y≦1, 0
摘要:
A driving unit includes a rotor, a plurality of vibratory members, and a driving circuit. The vibratory members each include an action part in contact with the outer periphery of the rotor and a motional part including an expansion-and-contraction driver to expand and contract in response to an applied voltage. The motional part allows the action part to slide along the rotational direction of the rotor. The driving circuit applies voltages to the expansion-and-contraction drivers. The vibratory members are disposed in such a way that the action parts of the vibratory members hold the rotor between the action parts.
摘要:
A sodium niobate powder includes sodium niobate particles having a shape of a cuboid and having a side average length of 0.1 μm or more and 100 μm or less, wherein at least one face of each of the sodium niobate particles is a (100) plane in the pseudocubic notation and a moisture content of the sodium niobate powder is 0.15 mass % or less. A method for producing a ceramic using the sodium niobate powder is provided. A method for producing a sodium niobate powder includes a step of holding an aqueous alkali dispersion liquid containing a niobium component and a sodium component at a pressure exceeding 0.1 MPa, a step of isolating a solid matter from the aqueous dispersion liquid after the holding, and a step of heat treating the solid matter at 500° C. to 700° C.
摘要:
Provided is a piezoelectric material which has satisfactory insulation property and piezoelectric property and which does not contain lead and potassium. The piezoelectric material includes a perovskite-type metal oxide that is represented by the following general formula (1): (NaxBa1-y)(NbyTi1-y)O3 General formula (1) where relationships of 0.80≦x≦0.95 and 0.85≦y≦0.95 are satisfied, and y×0.05 mol % or more to y×2 mol % or less of copper with respect to 1 mol of the perovskite-type metal oxide.
摘要:
A piezoelectric material containing a barium bismuth calcium niobate-based tungsten bronze structure metal oxide having a high degree of orientation is provided. A piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust cleaning device including the piezoelectric material are also provided. The piezoelectric material includes a tungsten bronze structure metal oxide that includes metal elements which are barium, bismuth, calcium, and niobium; and tungsten. The metal elements satisfy following conditions on a molar basis: when Ba/Nb=a, 0.37≦a≦0.40, when Bi/Nb=b, 0.020≦b≦0.065, and when Ca/Nb=c, 0.007≦c≦0.10. The tungsten content on a metal basis is 0.4 to 2.0 parts by weight relative to 100 parts by weight of the tungsten bronze structure metal oxide. The tungsten bronze structure metal oxide has a c-axis orientation.
摘要翻译:提供了一种含有高取向度的铌酸铋铋铋钙青铜结构金属氧化物的压电材料。 还提供了一种压电元件,液体排出头,超声波马达和包括压电材料的除尘装置。 压电材料包括钨青铜结构金属氧化物,其包括钡,铋,钙和铌的金属元素; 和钨。 当Bi / Nb = b,0.020≦̸ b≦̸ 0.065,当Ca / Nb = c时,金属元素满足以下条件:当Ba / Nb = a,0.37和nlE; a≦̸ 0.40; c≦̸ 0.10。 基于金属的钨含量相对于钨青铜结构金属氧化物100重量份为0.4〜2.0重量份。 钨青铜结构金属氧化物具有c轴取向。
摘要:
A piezoelectric ceramic that includes barium titanate and 0.04 mass % or more and 0.20 mass % or less manganese relative to barium titanate. The piezoelectric ceramic is composed of crystal grains. The crystal grains include crystal grains A having an equivalent circular diameter of 30 μm or more and 300 μm or less and crystal grains B having an equivalent circular diameter of 0.5 μm or more and 3 μm or less. The crystal grains A and the crystal grains B individually form aggregates and the aggregates of the crystal grains A and the aggregates of the crystal grains B form a sea-island structure.
摘要:
A vibration-type actuator includes a vibration member, a driven member configured to move relative to the vibration member by a vibration of the vibration member, an output member connected to the driven member, a shaft inserted in a through-hole in the vibration member, a fixing member coupled to the shaft and configured to support the output member, and a coil spring provided between the driven member and the output member and configured to bring the driven member into pressure contact with the vibration member. The coil spring includes, at an end portion thereof, a first end turn portion with a plural number of turns. The coil spring is connected to the output member at the first end turn portion. The thickness of the first end turn portion is greater than a gap between the driven member and the output member.
摘要:
A vibration wave driving apparatus including: a vibrator in which a first elastic body, a second elastic body and an electrical-mechanical energy converting element provided between the first and the second elastic bodies are arranged in a direction of a rotation axis; a rotor performing a rotational motion due to the vibration excited to the first elastic body by applying a driving signal to the electrical-mechanical energy converting element; an output transmitter rotating synchronously with the rotor; and a shaft passing through the vibrator, the rotor and the output transmitter in the direction of the rotation axis, wherein the output transmitter has a fitting portion to which the shaft or a flange fixed to the shaft is fitted, and wherein a portion of the fitting portion of the output transmitter and a portion of the first elastic body are overlapped in a direction perpendicular to the rotation axis.
摘要:
A one-way rotational transfer mechanism includes a rotary input member; a holding member including an axially orthogonal surface to the axis; a hollow-cylindrical rotary output shaft positioned coaxially around the rotary input member to be rotatable relative to the rotary input member, and including a cylindrical inner peripheral surface; a circumferential guide groove formed on the rotary input member; and a torque transfer ball installed between the axially orthogonal surface, the cylindrical inner peripheral surface and the circumferential guide groove, to roll on and be held between the axially orthogonal surface and the circumferential guide groove. The circumferential guide groove is shaped to make the torque transfer ball revolve around the rotary input member in a same direction as the rotary input member while trailing therebehind and to make the torque transfer ball press against the cylindrical inner peripheral surface when the rotary input member rotates.