Abstract:
A vertical field effect transistor of the structure having a gate pad and a gate finger, includes a semiconductor substrate of a first conduction type, and a first diffusion region of a second conduction type opposite to the first conduction type, formed in a principal surface of the substrate under the gate pad and the gate finger. A second diffusion region of the second conduction type is formed in the principal surface of the substrate and electrically connected to a source electrode so as to form a protection diode between the substrate and the second diffusion region. The second diffusion region is separated from the first diffusion region.
Abstract:
A method for forming a planar insulating layer over the surface of a semiconductor workpiece 8 which includes at least one low region 13 is discussed herein. The first step is to form a layer of blocking material 14 on the surface of the workpiece 8. A first material region 20 is then formed in the low region 13 and an insulating layer 21 is formed over the surface of the workpiece 8 including the first material region 20. The workpiece 8 is then heated in the presence of an active ambient such that the insulation layer 21 reflows and also so that the first material 20 region reacts with the active ambient to create an internal stress in said insulation layer 21. Other systems and methods are also disclosed.
Abstract:
A semiconductor device includes a semiconductor substrate of a first conductivity type, in which a drain region is formed in the substrate, and a gate electrode is formed on the surface of the substrate via an insulating film formed thereon. A Schottky metal as a source region is formed in the surface of the substrate away from the drain region, the Schottky metal and the substrate constituting a Schottky junction at an interface therebetween near the gate electrode. A shield layer of a second conductivity type is interposed between the Schottky metal and the substrate except in the Schottky junction. The gate electrode controls tunnel current at the Schottky junction.
Abstract:
A reduced area butting contact structure (10') is provided, which is especially suited for four-transistor static RAM cells. A structure is formed which includes a doped silicon region and one or more layers of polysilicon and oxide situated thereabove, one of which layers of polysilicon may be a gate polysilicon. An anisotropic etch is then performed through all upper layers including any upper polysilicon layers which may be present, but stopping at the doped silicon region and any gate polysilicon layers present, to form a contact hole (26'). The contact hole is filled with a conductive plug (32) of a material such as tungsten or polysilicon and etched back. In either case, contact with all polysilicon layers present and the doped silicon region is made. In the anisotropic etching process, a two-step etch is employed. The first etch is non-specific as to material, etching all relevant materials (polysilicon and oxide) at substantially the same rate and is continued through any upper polysilicon layers, but is terminated prior to etching the doped silicon region or any gate polysilicon layers (22). The second etch is specific as to material, etching silicon dioxide faster than polysilicon or silicon, and thus stops at the gate polysilicon layer and the doped silicon region.
Abstract:
A multilayer optical coating for semiconductor substrates characterized in that it is etchable by conventional techniques used for fabrication of integrated circuits and has high reflectivity.
Abstract:
By providing an intrinsic semiconductor region in a reverse biased junction cathode between an n-type surface region and a p-type zone, a maximum field is present over the intrinsic region in the operating condition. The efficiency of the cathode is increased because avalanche multiplication can now occur over a greater distance, while in addition electrons to be emitted at a sufficient energy are generated by means of tunneling.
Abstract:
A fusible link structure and method of making the same for use in integrated circuit structures is provided in which the fusible link comprises, in one embodiment, an alloy of platinum and silicon. The preferred alloy comprises the eutectic mixture having approximately 23 atomic percent silicon. Electrical connections to the fusible link are preferably provided by a layer of aluminum on a layer of material, preferably an alloy of titanium and tungsten wherein the titanium and tungsten alloy is disposed between the fusible link and the aluminum layer, and serves as a diffusion barrier for preventing diffusion of the aluminum into the fusible link. In a preferred embodiment, a fusible link is deposited on a relatively thick dielectric layer, preferably more than 10,000 .ANG. thick, having a relatively low thermal conductivity. The preferred method of depositing the fusible link is sputtering from a target comprising the platinum-silicide alloy, thus achieving a fuse element having uniform composition throughout its cross section. A fuse of this type has high reliability, requires low fusing current, and is dielectrically encapsulated sealed within the integrated circuit structure.
Abstract:
An integrated circuit semiconductor device in which a first insulating layer including a silicon nitride film and a second insulating layer including a silicon oxide film thermally grown are formed on a major surface of a silicon substrate and contacted each other at respective side edges to form a boundary is disclosed. First and second electrodes are formed on the first and second insulating layers, respectively and separated each other with a gap. A third insulating layer fills the gap and contacts to both of peripheral surface sections of the first and second insulating layers extending from the boundary, respectively.
Abstract:
A semiconductor device has a surface zone which forms a planar pn junction with the surrounding substrate, this pn junction being biased in operation in the reverse direction. In order to increase the breakdown voltage, one or more floating zones are located beside the pn junction within the range of the depletion zone, which also form planar pn junctions with the substrate. According to the invention, the floating zones have an overall doping of at least 3.multidot.10.sup.11 and at most 5.multidot.10.sup.12 atoms/cm.sup.2, as a result of which they are substantially depleted at a high reverse voltage.
Abstract translation:半导体器件具有与周围衬底形成平面pn结的表面区,该pn结在反向工作时被偏置。 为了提高击穿电压,在耗尽区的范围内,在pn结旁边有一个或多个浮动区,其也与衬底形成平面的pn结。 根据本发明,浮动区域具有至少3×10 11和至多5×10 12原子/ cm 2的总掺杂,其结果是它们在高反向电压下基本上耗尽。
Abstract:
A technique for passivating a PN junction adjacent a surface of a semiconductor substrate comprises coating the area of the surface adjacent the PN junction with a layer of hydrogenated amorphous silicon containing between about 5 and about 50 atomic percent of hydrogen.