Methods and compositions for determining pH

    公开(公告)号:US11136618B2

    公开(公告)日:2021-10-05

    申请号:US15575014

    申请日:2016-05-18

    摘要: Described herein are nucleic acid molecules and complexes useful as i-switch pH reporters that have increased sensitivities as a pH reporter and have alternate pH reporting capacity ranges. Aspects of the disclosure relate to a method for determining pH comprising providing a nucleic acid complex comprising: a first single-stranded nucleic acid molecule comprising the sequence CnXCnYCnZCn (SEQ ID NO. 6) wherein C is cytosine; X, Y and Z are each one or more of adenine, thymine, guanine, or combinations thereof; and n is greater than or equal to 2; and wherein at least 2 cytosine residues of the first single-stranded nucleic acid molecule are modified; and a second single-stranded nucleic acid molecule that is partially or fully complementary to the first single-stranded molecule, wherein a first label is conjugated to the first single-stranded nucleic acid molecule or the second single-stranded nucleic acid molecule; and wherein the first label is capable of producing a signal, wherein the intensity of the signal varies as a function of the conformation of the nucleic acid complex; and measuring the intensity of the signal and determining the pH from the measured signal.

    Methods and systems for hematocrit measurement

    公开(公告)号:US11131645B2

    公开(公告)日:2021-09-28

    申请号:US15971636

    申请日:2018-05-04

    发明人: Steven V. Leone

    摘要: Systems and methods for hematocrit measurement are provided. In some embodiments, a method for measuring glucose in a blood sample comprises measuring hematocrit in a blood sample using a Thevenin equivalent circuit to calculate a hematocrit complex impedance value, mapping the calculated hematocrit impedance to a hematocrit concentration in the blood sample, and calculating a concentration of glucose in the blood sampled using the mapped hematocrit concentration.

    Gene editing through microfluidic delivery

    公开(公告)号:US11125739B2

    公开(公告)日:2021-09-21

    申请号:US15542892

    申请日:2016-01-12

    摘要: Gene editing can be performed by introducing gene-editing components into a cell by mechanical cell disruption. Related apparatus, systems, techniques, and articles are also described. The methods and systems of the invention solve the problem of intracellular delivery of gene editing components and gene editing complexes to target cells. The results described herein indicate that delivery of gene editing components, e.g., protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), by mechanical disruption of cell membranes leads to successful gene editing. Because intracellular delivery of gene editing materials is a current challenge, the methods provide a robust mechanism to engineer target cells without the use of potentially harmful viral vectors or electric fields.

    NOVEL MALONYL-COA BIOSENSOR BASED ON TYPE III POLYKETIDE SYNTHASE AND USE THEREOF

    公开(公告)号:US20210277428A1

    公开(公告)日:2021-09-09

    申请号:US16477897

    申请日:2018-08-30

    摘要: The present invention relates to a recombinant microorganism for malonyl-CoA detection in which a type III polyketide synthase-encoding gene is inserted in the genome or in which a recombinant vector containing the gene is introduced; a method of screening a malonyl-CoA production-inducing substance using the recombinant microorganism; a method of screening a gene which is involved in increased malonyl-CoA production; and a method comprising knocking down the gene, screened by the method, in a microorganism, thus increasing the production of malonyl-CoA in the microorganism, and producing a useful substance in the microorganism using malonyl-CoA as a precursor. The use of the biosensor according to the present invention provides single-step signal generation, utilization in various microorganisms, utilization in self-fluorescent microorganisms, a simple construction method, and a simple screening method. In addition, when the present invention is combined with high-throughput screening, it has advantages in that strains having increased malonyl-CoA producing ability can be screened very easily and rapidly (˜3 days) and can be applied directly to the malonyl-CoA-based production of useful compounds.