Abstract:
An apparatus according to one embodiment includes a first read transducer having a tunnel valve structure, and a second read transducer coupled to the first read transducer. The second read transducer has a tunnel valve structure as well, but the tunnel valve structure of the first read transducer has a different resistivity than the tunnel valve structure of the second read transducer. An apparatus according to another embodiment includes an array of first read transducers, each first read transducer having a tunnel valve structure. At least a second read transducer is coupled to the first read transducers, the second read transducer having a tunnel valve structure. The tunnel valve structure of the first read transducer has a different resistivity than the tunnel valve structure of the second read transducer.
Abstract:
An apparatus according to one embodiment includes a magnetic head having multiple magnetic transducers, the transducers including read sensors. The read sensors are of at least two differing types selected from a group consisting of tunneling magnetoresistance (TMR), giant magnetoresistance (GMR), anisotropic magnetoresistance (AMR), and inductive sensors.
Abstract:
An apparatus according to one embodiment includes an array of magnetic read transducers each having a current-perpendicular-to-plane sensor, magnetic shields on opposite sides of the sensor in an intended direction of media travel thereacross, and a stabilizing layered structure between at least one of the magnetic shields and the sensor. The stabilizing layered structure has an antiferromagnetic layer, a first ferromagnetic layer adjacent the antiferromagnetic layer, and a second ferromagnetic layer. The antiferromagnetic layer pins a magnetization direction in the first ferromagnetic layer along an antiferromagnetic polarized direction of the antiferromagnetic layer. An antiparallel coupling layer is positioned between the ferromagnetic layers such that a magnetization direction in the second ferromagnetic layer is opposite the magnetization direction in the first ferromagnetic layer.
Abstract:
Embodiments of the present invention provide methods, systems, and computer program products for compensating for loss of current through shorted tunneling magnetoresistance (TMR) sensors. In one embodiment, for a magnetic head having multiple TMR read sensors, a first voltage limit is set for most parts and a second voltage limit is set for all of the parts. A number of TMR read sensors which are allowed to function between the first and the second voltage limits is determined using a probability algorithm, which determines the probability that the application of the second voltage limit will result in a dielectric breakdown within an expected lifetime of a drive is below a threshold value. For the number of TMR read sensors which are allowed to function at voltages between the first and second voltage limits, a determined subset of those sensors are then allowed to function at the second voltage limit.
Abstract:
A two-dimensional magnetic recording (TDMR) read head with an antiferromagnetic (AFM) layer recessed behind a center shield. The TDMR read head comprises a first read sensor and a center shield over the first read sensor, wherein the center shield has a first thickness at an air-bearing surface (ABS) and a second thickness at a back surface, the first thickness being greater than the second thickness. A ferromagnetic layer is disposed over a portion of the center shield, wherein the ferromagnetic layer is recessed from the ABS. The TDMR read head also includes an antiferromagnetic layer over the ferromagnetic layer and a second read sensor over the antiferromagnetic layer. By recessing the AFM layer away from the ABS, the down-track spacing between read sensors is reduced, thereby improving TDMR read head performance.
Abstract:
A magneto-resistive (MR) device and process for making the MR device are disclosed. The MR device has a pinned layer, a spacer layer proximate to the pinned layer, and a free layer proximate to the spacer layer. The free layer comprises a first magnetic layer proximate to the spacer layer, the first magnetic layer having a positive magnetostriction, a laminate magnetic insertion layer proximate to the first magnetic layer, and a second magnetic layer proximate to the magnetic insertion layer, the second magnetic layer having a negative magnetostriction. The laminate magnetic insertion layer has a first magnetic sublayer and a first non-magnetic sublayer proximate to the first magnetic sublayer. With the disclosed laminate magnetic insertion layer, the free layer has a low overall magnetostriction and results in a MR device with a high MR ratio.
Abstract:
Embodiments of the present invention provide methods, systems, and computer program products for compensating for loss of current through shorted tunneling magnetoresistance (TMR) sensors. In one embodiment, for a magnetic head having multiple TMR read sensors, a first voltage limit is set for most parts and a second voltage limit is set for all of the parts. A number of TMR read sensors which are allowed to function between the first and the second voltage limits is determined using a probability algorithm, which determines the probability that the application of the second voltage limit will result in a dielectric breakdown within an expected lifetime of a drive is below a threshold value. For the number of TMR read sensors which are allowed to function at voltages between the first and second voltage limits, a determined subset of those sensors are then allowed to function at the second voltage limit.
Abstract:
In one embodiment, a magnetic head includes a lower magnetic shield layer positioned at a media-facing surface, a pinned layer positioned above the lower magnetic shield layer at the media-facing surface, at least two MR elements extending in an element height direction by a first length positioned above the pinned layer and separated in a cross-track direction by an inner layer, bias layers extending in the element height direction by a second length positioned on outside edges of the MR elements and the pinned layer, and current paths positioned above and in electrical communication with the bias layers on either side of the inner layer, each current path extending in the element height direction away from the media-facing surface by a third length.
Abstract:
An apparatus according to one embodiment includes a transducer structure having: a lower shield having recesses in an upper surface thereof; an upper shield formed above the lower shield; a sensor between the upper and lower shields, the recesses being positioned on opposite sides of the sensor; and a first insulating layer in the recesses in the upper surface of the lower shield. An upper surface of the first insulating layer is coplanar with an uppermost portion of the upper surface of the lower shield. An apparatus according to another embodiment includes a transducer structure having: a lower shield having recesses in an upper surface thereof; an upper shield formed above the lower shield, the upper shield having recesses in a lower surface thereof; a sensor between the shields, the recesses being positioned on opposite sides of the sensor; and insulating layers in the recesses in the shields.
Abstract:
A reader includes top and bottom reader stacks that are offset relative to each other in a downtrack direction and disposed between a top shield and a bottom shield. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A middle shield is between the top and bottom reader stacks and the top and bottom side shields. The middle shield includes a common electrical conductive path coupled to the top and bottom reader stacks. A middle lead is coupled to an edge of the middle shield.